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Abstract—Dynamic Voltage and Frequency Scaling (DVFS)
on Graphics Processing Units (GPUs) components is one of
the most promising power management strategies, due to its
potential for significant power and energy savings. However,
there is still a lack of simple and reliable models for the
estimation of the GPU power consumption under a set of
different voltage and frequency levels.

Accordingly, a novel GPU power estimation model with both
core and memory frequency scaling is herein proposed. This
model combines information from both the GPU architecture
and the executing GPU application and also takes into account
the non-linear changes in the GPU voltage when the core and
memory frequencies are scaled. The model parameters are
estimated using a collection of 83 microbenchmarks carefully
crafted to stress the main GPU components. Based on the
hardware performance events gathered during the execution
of GPU applications on a single frequency configuration, the
proposed model allows to predict the power consumption of
the application over a wide range of frequency configurations,
as well as to decompose the contribution of different parts of
the GPU pipeline to the overall power consumption.

Validated on 3 GPU devices from the most recent NVIDIA
microarchitectures (Pascal, Maxwell and Kepler), by using a
collection of 26 standard benchmarks, the proposed model
is able to achieve accurate results (7%, 6% and 12% mean
absolute error) for the target GPUs (Titan Xp, GTX Titan X
and Tesla K40c).

I. INTRODUCTION

During the past decade, Graphics Processor Units (GPUs)
have suffered many evolutions, transitioning from real-time
graphics processors to high performance accelerators for
general-purpose applications, with particular application in
Deep Learning [1]. Because GPU architectures are able to
achieve both high arithmetic throughput and high memory
bandwidth [2], they are ideal to accelerate data parallel
applications. GPUs are nowadays a staple in many high-
performance computing (HPC) systems, confirmed by their
usage in 72 of the most recent TOP500 HPC systems list.

One common challenge of GPU-accelerated systems re-
gards the power and energy constraints. Despite their poten-
tial to high performance computing, GPU devices consume
considerable amounts of power, even on underused compo-
nents. This issue is often addressed by Dynamic Voltage and
Frequency Scaling (DVFS), which consists on scaling the
voltage and frequency of the GPU components according to
the requirements of the executing applications and leading
to significant power and energy savings [3], [4], [5], [6].

However, to efficiently apply these power management
techniques, an accurate model is required to predict how
the power consumption scales when different GPU fre-
quency/voltage configurations are applied. Previous works
have showed that applications that utilize the GPU resources
differently have their performance and power consumption
scale in distinct ways when DVFS is applied [7], [8], [9],
[10]. Hence, to accurately characterize the GPU power
consumption when executing any given application, it is nec-
essary to analyze the usage pattern of the multiple GPU com-
ponents. Other research works have proposed GPU power
models [11], [12], [13], that predict the power consumption
only at a fixed GPU configuration, i.e. not predicting the
consequent changes in power consumption caused by DVFS.
More recent works partially tackle this problem [14], [15],
by focusing on power prediction at different frequency
configurations, although achieving non-negligible accuracy
errors (ranging from 10% up to 24%). Nevertheless, none
ot these approaches considers the non-linear scaling of the
GPU voltage with the operating frequency.

In accordance, this paper main contribution is a new
approach to estimate GPU power consumption across an
ample range of frequency and voltage configurations for the
multiple GPU domains (core and memory). This is done
by carefully crafting a set of 83 CUDA microbenchmarks,
exercising the different components of real GPUs. The
average GPU power consumption during the execution of
each microbenchmark is measured for all frequency/voltage
levels, while a collection of performance events is measured
only at a reference configuration, allowing a clear under-
standing of how the power consumption changes with DVFS
and how each microbenchmark exploits the underlying GPU.

With this information, a power model for the consid-
ered GPU device is estimated using an iterative heuristic
algorithm that relies on statistical regression. Based on
the observed GPU components utilization rates, the model
allows the prediction of the power consumption of each
component, as well as estimating how the voltage scales with
their operating frequency. Once the model is created, it is
possible to characterize the power consumption of any GPU
application for all frequency and voltage configurations, by
measuring the performance events during its execution at a
single configuration.

Beyond DVFS prediction, the proposed model can also be
used in other scenarios, such as in providing an estimate of



the total and/or per-component power consumption for short-
lived kernels or even in devices without embedded power
sensor; or provide insights on the most influential factors
of GPU power consumption, useful during application opti-
mization.

The proposed GPU power model was extensively vali-
dated with a collection of applications from standard bench-
marks (Parboil [16], Rodinia [17], Polybench [18] and
CUDA SDK [19]), by using real GPU devices from the three
most recent NVIDIA microarchitectures (Pascal, Maxwell
and Kepler). The proposed model achieves accurate results,
on a frequency range of up to 2× change in core frequency
and 4× change in memory frequency, with average errors of
about 7%, 6% and 12% for the Pascal, Maxwell and Kepler
devices, respectively. This is a significant improvement over
the accuracy offered by previous state-of-the-art models and
low-level simulators, with the benefit of also running faster
than the latter. Accordingly, the most significant contribu-
tions of this paper are the following:
• a microbenchmark suite that stresses the GPU com-

ponents that are the most relevant to the GPU power
consumption, as well as the full disclosure of the
performance events that characterize the utilization of
the GPU components;

• a novel DVFS-aware GPU power model, able to predict
the GPU power consumption (decoupling it at the level
of each GPU component) at different frequency and
voltage configurations by using performance events
gathered at a single configuration — to the best of our
knowledge, this is the first truly DVFS-aware power
model, by being able to estimate how GPU voltage
scales with the operating frequency on modern GPU
devices1;

• validation of the proposed GPU power model with
standard benchmarks on commercially available GPU
devices from multiple architectures, including the most
recent Pascal microarchitecture.

The rest of this paper is organized as follows. Sec-
tion II motivates the presented work. Section III details
the proposed DVFS-aware power model and Section IV
presents the proposed microbenchmark suite. Section V
presents the experimental results obtained to validate the
proposed model. Section VI overviews the related work and
Section VII concludes the manuscript.

II. BACKGROUND AND MOTIVATION

Since GPU devices started being used as massively par-
allel general-purpose accelerators, their microarchitecture
observed several incremental changes. Nonetheless, common
design principles are usually observed, such as their modular

1The complete source code (microbenchmark suite and a tool to construct
the DVFS-aware GPU power consumption model) is publicly available at:
https://github.com/hpc-ulisboa/gpupowermodel.
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Figure 1: Block diagram of NVIDIA’s Titan Xp GPU.

design and structure (giving rise to both mobile and high-
performance devices).

Another common characteristic across most GPU gener-
ations (illustrated in Figure 1 for a Titan Xp GPU) is the
existence of independent frequency domains, such as the
core (or graphics) domain, clocked at fcore and the memory
domain, clocked at fmem and which affects only the device
memory (DRAM) bandwidth.

By applying DVFS to exploit the independent frequency
domains, it is possible to adapt the performance of the
GPU components to the requirements of the application
under execution and attain energy savings [3], [4], [5],
[6]. However, optimizing the GPU configuration (i.e. the
frequency and voltage levels of both core and memory
domains) is a non-trivial problem [20], [9], [10], as it
requires an accurate estimation of both the execution time
and average power consumption and how they change when
the GPU configuration is modified.

Generally, the power consumption of a GPU device can
be decomposed in the sum of the power consumptions
of the multiple architectural components [21], with the
power of each component (Ck) being associated with its
peak power consumption and with how an application
stresses such component during its execution (Power(Ck) ∝
Utilization(Ck)).

A. Power consumption and DVFS

Gonzalez et al. [22] and Butts et al. [23] proposed the
power models presented in Equations 1 and 2:

PowerDynamic = a · C ·V2 · f, (1)

PowerStatic = V ·N ·Kdesign · Îleak, (2)

where a denotes the average utilization ratio, C the total
capacitance, V the supply voltage, f the operating frequency
and N the number of transistors in the chip design. Kdesign

is a constant factor associated with the technology char-
acteristics and Îleak is a normalized leakage current for a
single transistor, which depends on the threshold voltage.
These two power models can be used to describe how the
dynamic and static components scale with the frequency
and voltage of their respective hardware elements. However,
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Figure 2: DVFS impact on the power consumption of two
applications on the GTX Titan X GPU. On the right side
is presented the utilization of the GPU components during
the application execution (GPU frequencies set to fcore =
975 MHz and fmem = 3505 MHz).

although they give a valuable insight on the impact of
DVFS, it is usually impossible to accurately measure these
two components separately, let alone determine the model
individual parameters. Consequently, other approaches to
model the GPU power consumption are required.

Additionally, while it is common for GPU manufacturers
to provide tools to dynamically scale the frequency of each
GPU domain, there is usually no way of knowing how the
voltage is scaling. In fact, while in some previous NVIDIA
generations (like the Fermi), the GPU voltage scaled linearly
with the frequency of the cores [4], in Maxwell GPUs it is
possible to scale the frequency of the cores without changing
the voltage [10].

B. DVFS impact on GPU power consumption

Each GPU application has its unique characteristics, such
as the algorithm, the data types, the used operations, as
well as the size of the input data, the dimensions of the
grid of threads, etc. These characteristics determine how the
different GPU components are used during the application
execution. Furthermore, depending on how the applications
exercise the GPU components, the effects of DVFS on the
total GPU power consumption can vary between applications
— the effects also depend on the architectural characteristics
of each utilized component (see Equations 1 and 2).

Figure 2 presents an example of such a scenario, where
the BlackScholes and CUTCP benchmarks were executed on
a NVIDIA GTX Titan X GPU across multiple frequency and
voltage configurations. Figure 2 also presents the utilization
of the main GPU components, represented as the ratio of the

achieved and peak theoretical throughputs of the component.
As it can be seen, the two applications present very different
utilization rates of the GPU components, which results in
the distinct power consumption levels of 181W and 135W
at the default frequency configuration of the GPU (fcore =
975 MHz and fmem = 3505 MHz).

Additionally, it can also be seen that the variation of
the power consumption when the memory frequency is
decreased is much higher for the BlackScholes benchmark,
mainly because of its greater DRAM utilization: when the
memory frequency decreases from 3505 MHz to 810 MHz,
the power consumption decreases by 52% (from 181W to
87W). On the other hand, the power consumption of the
CUTCP benchmark decreases only by 24% (from 135W
to 102W). Regarding the core frequency scaling, it can
be seen that the GPU power cannot be represented as a
simple linear function of the core frequency, as suggested
in the power models proposed in previous works [12], [14],
due to the implicit voltage scaling (see also Equations 1
and 2 and observe the non-linear behaviour of the power
consumption in Figure 2).

From these observations, it is clear that an accurate
DVFS-aware power model is needed, to characterize the
relationship between the utilization of the GPU components,
their runtime power consumption and how they change when
the frequency/voltage of the GPU domains are scaled.

This is a gap that this research aims to close, by proposing
an iterative heuristic algorithm based on statistical regression
to model both the uncertainties of the GPU components
and how their voltage scales with the frequency of each
domain, creating an accurate power consumption model
of the GPU. Through extensive microbenchmarking of the
several GPU components, it is possible to estimate the
parameters of the power consumption model. Once the
model is constructed, one can predict the total and/or per-
component power consumption of a new (unseen) applica-
tion on any frequency/voltage configuration, by measuring
its performance events at a single configuration.

III. DVFS-AWARE POWER MODEL

A. Power consumption model

The proposed DVFS-aware power model assumes the
decomposition of the GPU power consumption across its
internal components. This is done by considering that the
components may operate under different frequency and
voltage domains, such that:

PGPU =

NV-F∑
k=1

P(Dk), (3)

where NV-F represents the number of independent volt-
age/frequency (V-F) domains and P(Dk) represents the



power consumption of each domain (Dk). The power of each
domain (Dk) is defined as follows:

P(Dk) = α0Vk + Vk
2fk(α1 +

NC∑
i=1

γi ·Ui) (4)

where Vk and fk represent the specific voltage and frequency
of the Dk domain, NC is the number of GPU components
operating under domain Dk and Ui ∈ [0, 1] is their respective
average utilization rate. The coefficients α0, α1, γ1,...,γNC

represent a set of hardware-specific parameters, associated
to the characteristics of the underlying architecture, such as
component total capacitance and leakage resistance. Hence,
the proposed power model comprises 3 different terms: 1)
α0Vk, corresponding to the static power of the domain (see
Equation 2); 2) Vk2fk · α1, corresponding to the power
consumption associated with that specific frequency and
voltage level, independent of the component utilizations
(e.g., idle power of that V-F level); and 3) Vk2fk · γiUi,
corresponding to the dynamic power of component i (see
Equation 1).

To reduce the number of unknown parameters, Equation 4
can be normalized to a reference voltage (VR):

P(Dk) = α0VR
Vk

VR
+

Vk

VR

2

fk(α1VR +

NC∑
i=1

γiVR ·Ui)

= β0V̄k + V̄2
kfk(β1 +

NC∑
i=1

ωi ·Ui), (5)

where β0 = α0VR, β1 = α1VR, ωi = γiVR and V̄k = Vk

VR
.

This formulation is particularly useful during the model
estimation, since the normalized V̄k is 1 at the reference
configuration, making it simpler for this particular setup
and providing the grounds for the initial estimation of the
parameters (see Section III-D).

Although one can generally consider multiple V-F do-
mains, in most modern GPU devices NV-F = 2, correspond-
ing to the core domain (Pcore), which includes the L2 cache,
and the memory domain (Pmem), i.e. PGPU = Pcore+Pmem.
By replacing Equation 5 for these two domains and by
denoting with Ncore the number of components from the
core domain whose power consumption is considered in the
model, the following is obtained:

Pcore = β0V̄core + V̄2
corefcore(β1 +

Ncore∑
i=1

ωiUi), (6)

Pmem = β2V̄mem + V̄2
memfmem(β3 + ωmemUmem). (7)

Equations 6 and 7 show the distinctive approach of
the proposed model when compared with the state-of-the-
art [12], [14], since it considers multiple V-F domains and
relies on a more accurate relationship between frequency
scaling, voltage levels and power consumption.

B. Hardware utilization metrics
To accurately determine the utilization parameters (Ui) in

Equations 6 and 7, a set of metrics is defined, which consider
the GPU hardware components with the greatest contribu-
tion to the power consumption variations, namely: integer
(Int), single- and double-precision floating-point (SP/DP)
and special-function (SF) units, shared memory, L2 cache
and DRAM. Although it would be potentially beneficial to
consider more components of the GPU architecture (e.g.
L1 instruction and data caches, texture units, etc.), it is not
easy to assess their real-time utilization, since NVIDIA does
not disclose events or metrics to accurately describe their
average utilization. Nonetheless, should such information be
disclosed, one may easily consider other hardware units, in
order to further improve the model accuracy. Moreover, as it
will be described in Section III-C, even for the selected GPU
components it was deemed necessary to rely on undisclosed
events, by performing extensive experimental testing to
uncover their potential meaning.

The utilization level of the considered GPU compute
units, measured during the application execution, can be
obtained by observing the number of executing warps and
by comparing it to the number of warps that would execute
if the units were always filled:

Ux =
AWarpsx ·WarpSize

ACycles ·UnitsPerSMx
, x ∈ {Int,SP,DP,SF},

(8)
where AWarpsx is the number of warps executing on unit
x during the application execution, ACycles is the number
of cycles when there is at least one active warp on the SMs,
UnitsPerSMx is the number of units of type x on each
SM and WarpSize is the number of threads in a warp (a
characteristic of the GPU device).

On the other hand, the utilization rate of the different
memory hierarchy levels can be computed by looking at the
achieved bandwidth at each level (ABand) and by compar-
ing it with the corresponding peak bandwidth (PeakBand),
such that:

Uy =
ABandy

PeakBandy
, y ∈ {L2,Shared,DRAM} . (9)

C. Architecture-specific events
Some of the metrics used to compute the utilization

rate in the proposed model can be directly gathered from
the publicly available device characteristics, such as the
UnitsPerSM for the Int, SP, DP and SF units, and the
WarpSize. The DRAM and shared memory peak bandwidth
can be calculated using the known device characteristics
(PeakBand = f · Bytes

Cycle , where f is the operating frequency
of that memory level). The L2 cache peak bandwidth cannot
be computed as trivially, as it was shown by numerous
works [24], [25], [26]. Hence, it was experimentally deter-
mined with a set of specific L2 microbenchmarks (detailed
in Section IV), specifically developed for this purpose.



Table I: Performance events required to compute the metrics
used in the proposed power consumption model.

Metric Titan Xp GTX Titan X Tesla K40c
ACycles active cycles

ABandL2
l2 subp{0,1} total rd sq∗ l2 subp{0,1,2,3} t rd sq∗

l2 subp{0,1} total wr sq∗ l2 subp{0,1,2,3} t wr sq∗

ABandShared
shared ld trans l1 sh ld trans

shared st trans l1 sh st trans

ABandDRAM
fb subp{0,1} rd sectors

fb subp{0,1} wr sectors

AWarpsSP/INT
† W580, W581 W361, W362

W131, W134
W136, W137

AWarpsDP
† W584 W364 W141

AWarpsSF
† W560 W359 W133

InstINT
† W831 W504 W205

InstSP
† W829 W502 W203

∗ sq - sector queries
† The prefix W stands for: 352321 for Titan Xp, 335544 for GTX Titan X

and 318767 for Tesla K40c.

However, other required metrics depend on the average
utilization of the GPU components, which also depend on
the application characteristics (and therefore, need to be
measured during their execution). Table I presents the set of
performance events that were used to obtain the remaining
parameters shown in Equations 8 and 9, collected using
the NVIDIA CUPTI library. The events identified with
a label correspond to the events disclosed by NVIDIA.
The remaining events, identified with a numeric ID, were
selected through an extensive experimental testing in order
to assess their meaning. Furthermore, since some of the
considered metrics (e.g. ABandDRAM) depend on the values
of multiple performance events (4 for this specific metric)
an aggregation step needs to be conducted.

Moreover, since in the considered GPU devices the events
related with the SP and Int units are combined into the same
set of events (making them indistinguishable), the utilization
of each of those components is determined by the ratio of
instructions executed for each instruction type:

AWarpsz =
AWarpsInt/SPInstz

InstInt + InstSP
, z ∈ {Int,SP}. (10)

D. Model parameter estimation

The final step towards the definition of the proposed
DVFS-aware power model corresponds to the determination
of the unknown parameters X = [ β0, β1, β2, β3, ωmem, ω1,
. . . , ωN ] and of the set of voltages V̄ = (V̄core, V̄mem)
associated with each frequency configuration (which are also
considered as unknowns because general GPU drivers do not
directly provide these values). Hence, a set of specifically
developed microbenchmarks (described in Section IV) is
used to stress the considered GPU components to better
characterize their uncertainties. The set of measurements
gathered during the execution of these microbenchmarks, i.e.
the utilization rates and the power consumption at each V-F
configuration, can then be used to estimate the parameters

of the proposed model. Moreover, since there is a relation
between the unknowns V̄k and βi/ωi in the proposed model
(Equations 6 and 7), a simple least squares regression cannot
be used, as it leads to a non-full-rank optimization problem.
Hence, an iterative optimization algorithm was devised to
estimate such parameters, which works as follows:

1) Determine the initial value of the unknowns X by
considering the reference frequency F1 = (fcore1,
fmem1), where V̄core1 = V̄mem1 = 1. Consider also
two additional configurations F2 = (fcore2, fmem1)
and F3 = (fcore1, fmem2) and assume that their corre-
sponding normalized voltage levels are also 1 (V̄core2

= V̄mem2 = 1). By using the measurements obtained
at those three configurations, solve the following linear
system using a least squares estimation:

X = arg min
X

∑
Microbench.∈BA

(
Pmeas. − P̂

)2
s.t. V̄core = V̄mem = 1,

(11)

where Pmeas. is the measured power consumption,
P̂ = Pcore + Pmem, as given by Equations 6 and 7,
and BA is the set of microbenchmarks executed at
the frequency configurations F1,F2 and F3.

2) By using the previously determined vector of param-
eters X — for each frequency configuration (fcore,
fmem) — use the measurements from the set of mi-
crobenchmarks to estimate the values of V̄core and
V̄mem, by solving the following problem:

For each F = (fcore, fmem) vector, solve :

V̄ = arg min
V̄

∑
Microbench.∈BB

(
Pmeas.−P̂

)2
s.t. ∀

fx1>fx2
V̄x1≥V̄x2, x∈{core,mem}

(12)

where V̄xi is the voltage level associated with fre-
quency fxi and BB is the set of microbenchmarks
executed at frequency configuration (fcore, fmem).

3) Considering the newly determined values for V̄core

and V̄mem, repeat step 1 to estimate the new values
of X, but using the measurements from all frequency
levels, i.e. by extending BA to include the set of
measurements taken for all microbenchmarks at all
frequency configurations.

4) Iterate between steps 2 and 3 until convergence is
achieved, or the maximum number of iterations is
reached.

One benefit of the proposed methodology over previous
studies is the ability to dynamically determine how the
GPU voltage is scaling for each frequency configuration.
Considering that part of the power consumption scales with
the square of the voltage, it is important to have an informed
knowledge of these values, in order to achieve an accurate
model of the architecture. Hence, despite being impossible to
measure the real-time voltage of each GPU domain in many



DATA_TYPE r0, r1, r2, r3;

r0=A[threadId];

r1=r2=r3=r0;

for (int i=0;i<N;i++) {

  r0 = r0 * r0 + r1;

  r1 = r1 * r1 + r2;

  r2 = r2 * r2 + r3;

  r3 = r3 * r3 + r0;

}

B[threadId]=r0;

(a) Int, SP, DP Code:

DATA_TYPE r0, r1, r2, r3;

r0=A[threadId];

r1=r2=r3=r0;

for(int i=0;i<N;i++) {

  r0 = log(r1);

  r1 = cos(r2);

  r2 = log(r3);

  r3 = sin(r0);

}

B[threadId]=r0;

(b) SF Code:

__shared__ DATA_TYPE shared[THREADS];

DATA_TYPE r0;

for(int i=0;i<COMP_ITERATIONS;i++) {

  r0 = shared[threadId];    

  shared[THREADS - threadId - 1] = r0;}

(c) Shared Memory Code:

DATA_TYPE r0;

for(int i=0;i<COMP_ITERATIONS;i++) {

      r0 = cdin[threadId];

      cdout[threadId]=r0;}

cdout[threadId]=r0;

(d) L2-Cache Code:

DATA_TYPE r0, r1;

r0=A[threadId];

r1=r0;

for (int i=0;i<N;i++) {

  r0 = r0 * r0 + r1;

  r1 = r1 * r1 + r0;

}

B[threadId]=r0;

(e) DRAM Code:

Figure 3: Example CUDA source code of some of the used microbenchmarks.

ld.global.f32tt%f1,t[%rd1];

mov.f32tt%f2,t%f1;

mov.f32tt%f3,t%f1;

mov.f32tt%f4,t%f1;

BA1:

ttfma.rn.f32tt%f5,t%f1,t%f1,t%f2;

ttfma.rn.f32tt%f6,t%f2,t%f2,t%f3;

ttfma.rn.f32tt%f7,t%f3,t%f3,t%f3;

ttfma.rn.f32tt%f8,t%f4,t%f4,t%f1;

tt...tt

ttadd.s32tt%r5,t%r5,t32;

ttsetp.lt.s32t%p1,t%r5,t512;tt

ttbrattBA1;

st.global.f32tt[%rd1],t%fd5;

Loop unrolled 
32 times

Check if 
achieved 
512 iterations
if not, jump
back to BA1

SP PTX Code:

Figure 4: PTX source code of the microbenchmark stressing
the single-precision floating-point units.

computing systems, the proposed methodology still allows
achieving accurate power predictions, since no assumption
is made on how the voltage scales with frequency. However,
if there is a previous information regarding the voltage
levels of each domain at any given frequency configuration,
the proposed methodology can be simplified into a single
execution of step 3, by utilizing the real voltage values.

E. Power consumption prediction

With the model parameters determined, it is possible to
predict how the voltage scales with the frequency of each
GPU domain and to obtain the total power consumption of
any executed application for the whole range of the device
V-F configurations, by simply measuring its performance
events on a single configuration. This allows a considerable
decrease of the design search space, which is a highly valu-
able advantage when applying DVFS in real-time. Finally,
the obtained power model also allows the decomposition of
the power consumption into the partial consumptions of the
several GPU components.

IV. MICROBENCHMARKING THE GPU

To model the unknown characteristics of the underlying
architecture, the proposed modelling methodology relies on
in-depth microbenchmarking of specific GPU components.
By creating a wide set of microbenchmarks, covering the

several components of the GPU, it is possible to isolate their
power consumption, enabling an accurate prediction of their
contribution to the total GPU power consumption.

Figure 3 presents a subset of CUDA code examples from
the developed microbenchmarks. To stress the main arith-
metic units (Int, SP and DP), the microbenchmark presented
in Figure 3a was developed, where the DATA TYPE can be
switched between int, float and double. Figure 4 presents
the PTX code corresponding to the SP variation of the
microbenchmark, where it can be seen that the FP operations
make use of architectural registers. When executing this
microbenchmark, each thread starts by initializing the values
of 4 registers with data from the global memory. Afterwards,
each thread executes a series of multiply and addition oper-
ations (using the PTX fused multiply-add instruction), until
a number of N iterations is reached (N=512 in the example
shown in Figure 4). The threads finalize by storing the com-
puted value back to the global memory. By running the same
code with different values of N, it is possible to characterize
the impact of different instruction mixes to the GPU power
consumption, by assigning different amounts of arithmetic
operations per memory access (arithmetic intensity). As
the value of N increases, more arithmetic instructions are
executed for each pair of load/store instructions, resulting in
increasingly higher levels of utilization of the corresponding
arithmetic units and lower utilization levels of the memory
hierarchy (DRAM and L2 cache).

Figure 3b presents the developed microbenchmark to
stress the special-function units. The code is very similar
to the previous arithmetic microbenchmarks, with the dif-
ference relying on using transcendental operations instead
of a simple multiply and addition.

The microbenchmark presented in Figure 3c was devel-
oped to stress the memory subsystem, where each thread
consecutively performs one load and one store to the shared
memory. The load and store addresses are chosen in a way
that minimizes the shared-memory bank conflicts for both
loads and stores.

Due to the absence of publicly available information
regarding the operation and structure of the L2 cache on
NVIDIA GPUs, developing a microbenchmark to stress this
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Figure 5: Per-component utilization rates and power breakdown of the microbenchmark suite on GTX Titan X at the default
frequency (fcore = 975MHz and fmem = 3505MHz).

component is not a trivial task. Hence, the considered mi-
crobenchmark (Figure 3d) is based on [26], where different
access patterns are explored to characterize the L2 cache.

Figure 3e illustrates the microbenchmarks used to stress
the GPU DRAM. While the structure is rather similar to the
arithmetic microbenchmarks (Figure 3a), lower arithmetic
intensities can be obtained by assigning a lower number of
arithmetic instructions per loop and by choosing smaller
values for N, which results in higher utilization of the
DRAM (since the threads spend less time inside the SMs).

Finally, a set of microbenchmarks corresponding to a mix
of the several used components was also considered, as well
as a microbenchmark where the GPU is awaken with no
executing kernel (Idle), resulting in the proposed suite of 83
microbenchmarks.

Figure 5A presents the utilization rate of the seven consid-
ered GPU components, obtained by executing the developed
microbenchmarks on the GTX Titan X GPU (Maxwell) at
the default frequency configuration. Looking at the first 11
microbenchmarks from the Integer collection, it is possible
to see the effects of varying the arithmetic intensity (by
increasing N, in Figure 3a). This can be observed with
the gradual decrease of the utilization rate corresponding to
both elements from the memory hierarchy (DRAM and L2
cache), and by the increase in the utilization of the Int units.
The same behaviour can be observed for the SP, DP and
SF microbenchmarks. Regarding the memory microbench-
marks, these successfully stress the corresponding memory
element, with varying degrees of utilizations obtained again
by varying the loop iterations in their source code. Overall,
the results show that the proposed microbenchmark suite
successfully accomplishes its design goal, i.e. in stressing
the considered components.

Upon model construction, i.e. after estimating the un-
known parameters in Equations 6 and 7, it is possible to pre-
dict the power consumption of each microbenchmark at the
component-level. Figure 5B illustrates the per-component

power breakdown of each microbenchmark, together with
the total measured power consumption at the default fre-
quency configuration. From these results, it can be observed
that the proposed model is particularly accurate in predicting
the power consumption on this set of applications (see
Section V-B for a robust assessment of the results using
an independent set of applications) and that the power
consumption of the components follow their corresponding
utilization rate. Additionally, it can also be observed that,
for this V-F configuration, the constant portion of the power
consumption, i.e. the terms from Equations 6 and 7 that do
not depend on the components utilization, contribute with
84W to the total power consumption, and that the maximum
contribution of the dynamic power is about 49% (achieved
in one of the Mix microbenchmarks).

V. EXPERIMENTAL RESULTS

A. Experimental setup

To validate the proposed model, three GPUs from the most
recent NVIDIA microarchitectures (see Table II) were used
as testing platforms on a Linux CentOS7 environment. While
the Tesla K40c GPU has a single non-idle memory frequency
level, the two other GPUs allow multiple configurations. For
this reason, and since the Titan GPUs are more recent, the
presented results will mostly focus on the GTX Titan X and
Titan Xp.

The NVML library was used for monitoring and changing
the operating frequencies of the GPU domains (while the
voltage is automatically set). The real power measurements
are also obtained using NVML, whose values are refreshed
at an estimated 35ms period for the Titan Xp, 100ms for
the GTX Titan X and 15ms for the Tesla K40c. Since many
GPU benchmarks have very short execution times, which
may result in misleading power measurements given the
observed refresh rates, the kernels were repeatedly executed
whenever necessary, to always reach an execution time of at
least 1 second at the fastest GPU configuration (highest core



Table II: Summarized description of the used GPUs.

Titan GTX Tesla
Xp Titan X K40c

Base architecture Pascal Maxwell Kepler
Compute capability 6.1 5.2 3.5

Memory frequencies (MHz) {5705, 4705}∗ {4005, 3505,
3004

3300, 810}
Core freq. range (MHz) [1911:582] [1164:595] [875:666]

Number of core freq. levels 22 16 4
Default Mem. Frequency 5705 3505 3004
Default Core Frequency 1404 975 875
Threads per warp 32 32 32
Number of SMs 30 24 15
Memory Bus Width 48B 48B 48B
Shared mem. banks 32 32 32
SP/INT Units/SM 128 128 192
DP Units/SM 4 4 64
SF Units/SM 32 32 32
TDP (W) 250 250 235
∗ NVIDIA driver does not allow setting the memory frequency to lower levels.

Table III: Standard benchmarks used to validate the proposed
power model.

Suite Application Name

Rodinia [17]
Streamcluster, Backprop, LUD, Gaussian,
Hotspot, K-Means, ParticleFilter naive,
ParticleFilter float, SRAD v1, SRAD v2

Parboil [16] CUTCP, LBM

Polybench [18]
2MM, 3MM, FDTD-2D, SYRK, CORR,

GEMM, GESUMMV, GRAMSCHM,
SYRK DOUBLE, 3DCONV, COVAR

CUDA SDK [19] Blackscholes, ConjugateGradientUM, matrixMulCUBLAS

and memory frequencies). The power consumption of each
kernel was computed as the average of all gathered sam-
ples. For benchmarks with multiple kernels the total power
consumption was obtained by weighting the consumption
of each kernel with its relative execution time. To guarantee
the accuracy of the presented results, all benchmarks were
repeated 10 times, with the presented values corresponding
to the median value.

The results will be analysed by considering the whole
frequency range in Section V-B. To create the model, the
microbenchmark suite described in Section IV was executed
on different frequency levels, with the performance events
shown in Table I being measured only at the reference fre-
quency levels. The algorithm proposed to estimate the power
model converged in less than 50 iterations, corresponding
to about 30 seconds on an Intel i7 4500U processor. To
obtain a bias-free validation of the model, an independent
collection of 26 applications from 4 benchmark suites was
used (see Table III), with each application being executed
only at the reference frequency configuration to measure the
required hardware events. Since these applications were not
used to estimate the model parameters, they allow showing
the model robustness for new (unseen) applications. The
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Figure 6: Measured vs. predicted core voltage.
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Figure 7: Power prediction for all V-F configurations, for
the validation set of standard benchmarks (not used in the
model construction).

accuracy of the predictions is validated using the power con-
sumption measurements taken at all considered frequency
levels (see Table II).

B. DVFS-aware power model validation

Voltage levels prediction: Even though the devised model
assumes that both Vcore and Vmem can scale with the
changes in frequency of the two GPU domains (see Sec-
tion II-B), from extensive experimental testing, no voltage
differences were observed across the different memory fre-
quency levels for the considered GPUs.

On the other hand, the results denote clear differences
on the core voltage levels for the GTX Titan X and Titan
Xp GPUs. Figure 6 presents the comparison between the
predicted core voltage (obtained during the construction
of the model), with the measured voltage for the Titan
Xp and GTX Titan X. The real measured voltages were
obtained using the NVIDIA Inspector and MSI Afterburner
(third party Windows tools). However it was not possible to
sweep through all core and memory frequency ranges, due
to limitations of these tools, nor was it possible to verify the
voltage levels on the Tesla K40c GPU. The results clearly
show that there are two distinct regions for the core voltage
when scaling the core frequency: i) a constant voltage region,
for lower frequencies; and ii) after a specific frequency,
the voltage starts increasing linearly with the frequency. By
comparing the predicted and measured values, it can be
observed that the devised model is accurate in predicting
the core voltage, and in identifying the breaking point
between the two distinct regions. The existence of these
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Figure 9: Effects of varying the input matrices size for the
matrixMulCUBLAS kernel, on the GTX Titan X.

two different scaling behaviours may significantly affect
the power consumption of an application over the different
core frequencies. Moreover, it should be highlighted that
significant core voltage differences are predicted on the GTX
Titan X across different memory frequencies (although it is
not shown in the figure because such values could not be
validated).

Power consumption prediction with DVFS: Figure 7
presents the accuracy of the proposed power model for the
validation benchmarks2, for multiple core and memory V-F
configurations. Since multiple frequency settings were taken
into account, the range of obtained power values is large, e.g.
going from 40W up to 248W on the GTX Titan X.

On the validation benchmarks the model achieves mean
absolute errors of 6.9%, 6.0% and 12.4% for the three
devices. The observed higher error on the Tesla K40c can
be explained by a reduced accuracy of the hardware events
when characterizing the utilization of the GPU components

2The validation benchmarks were not used in the construction of the
model, to allow a robust assessment of the results.

(using the undisclosed events presented in Table I). Nonethe-
less, the achieved prediction error is still considerably lower
than the one achieved in previous works on the same mi-
croarchitecture, where the prediction error was 23.5% [14].
The architecture and existing performance events of the two
other GPUs (GTX Titan X and Titan Xp) are very similar,
resulting in similar accuracies of the power model. It is also
worth noting that even by using the performance events
measured only at the reference configuration, the model
achieves accurate results when predicting the power con-
sumption for a wide range of configurations. In particular,
the results of the GTX Titan X show accurate predictions
up to a frequency range of 4.3× for the memory frequency
(3505MHz→810MHz) and 1.6× for the core frequency
(975MHz→595MHz).

Figure 8 depicts the prediction error of the power model
for the considered validation benchmarks for different mem-
ory frequencies of the GTX Titan X. When covering a
frequency range of 2× for the core frequencies and 4× for
the memory frequencies, a mean prediction error of 6.0% is
still achieved, over all the V-F configurations. As one might
expect, when predicting the power at the operating frequency
furthest away from the reference configuration (where the
performance events that were used to build the model were
measured), the accuracy error slightly increases. This is seen
by the 4.9% accuracy error when fmem = 3505 MHz, while
at fmem = 810 MHz the accuracy error increases to 8.7%.

Input data size: For a given kernel, the characteristics
of the input data will determine how the different GPU
components are stressed. For example, one kernel with
small enough input data such that it fits in the L2-cache
is expected to have different resource utilization than the
same kernel with a much larger input data, as this will lead
to an increase of DRAM accesses. Naturally, the different
utilization patterns are taken into account in the model,
resulting in distinct power consumptions.

Figure 9 presents the effects of varying the size of the
(square) input matrices of the matrixMulCUBLAS kernel in
the GPU power consumption and in the utilization of each
GPU component. As it can be seen, with larger input data
sizes, the utilization of the SP unit, L2-cache and DRAM
increase, resulting in the presented rise of the GPU power
consumption, which is predicted by the proposed model with
a 6.8% average error.

Decoupling the GPU power: Once the model is fully
determined, it is possible to estimate the power consumption
of each GPU component for any application. This power-
breakdown can be particularly interesting for application
optimization, since it provides the developers with crucial
information about which components represent the main
power consumption bottlenecks.

Figure 10 presents the utilization and power breakdown of
the set of standard benchmarks for two V-F configurations
on the GTX Titan X GPU. From the presented results, it can
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Figure 10: Power consumption breakdown on the real benchmarks, on the GTX Titan X GPU.

be observed that the group of validation benchmarks is rather
representative, presenting large differences in the utilization
levels of the different GPU components. Nonetheless, in
both V-F configurations, it can be seen that a non-negligible
portion of the power consumption is accounted for in the
constant part (80W for the reference configuration and 50W
for the low memory configuration), which aggregates the
static power, the idle power of that frequency configuration,
and the power consumptions of other non-modelled GPU
components (due to the lack of informative counters). Natu-
rally, between the two V-F configurations, the large variation
in DRAM operating frequency leads to the observed large
variation in the DRAM power consumption, while the power
of the remaining components stays almost constant.

Use cases: The proposed power consumption model can
be applied on the following scenarios: 1) GPUs without
sensor, by using a previously built model (e.g. using external
sensors) to provide an estimate of the total and/or per-
component GPU power consumption (similarly to [27]
from Intel). 2) Application analysis, by using the per-
component breakdown to assess the power bottlenecks of
developing applications (alternative to the usual performance
optimization); or even in a virtualization scenario (e.g.
NVIDIA GRID system using Hyper-V execution [28]),
where the model — constructed in the Hypervisor — could
be provided to the guest VMs, allowing them to estimate
their corresponding total and/or per-component power con-
sumption (which they currently have no way of measuring).
3) DVFS management, by facilitating the search for the
optimal frequency state, as it allows estimating the power
consumption at different frequency configurations without

requiring exhaustive execution on all possible configurations
as in [29]. 4) GPU hardware integration, by implement-
ing the proposed model in hardware (similarly to Intel
RAPL [30]), where it would be able to take into account fine-
grained V-F perturbations and potentially even non-SMU
(System Management Unit) V-F adjustments.

VI. RELATED WORK

Initial attempts to model the GPU power consump-
tion were focused on modelling the power at a fixed
frequency/voltage configuration, neglecting the effect of
DVFS [31], [32], [33], [34], [35], [36]. In particular, Na-
gasaka et al. [37] proposed a power consumption model for
a Tesla GPU (GTX285) based on hardware performance
events and on a statistical approach to find the correla-
tion between the performance profiles and the GPU power
consumption. They achieved 4.7% average prediction error,
although they also stated that the approach was ineffective on
more recent GPUs, namely those from the Fermi generation.
Hong et al. also proposed a power model for a Tesla GPU
(GTX280) [11] based on an analysis of both the binary
PTX and of the pipeline, at runtime. The offline PTX
analysis allows this model to attain highly accurate GPU
power predictions, at the cost of being very GPU-specific.
Hence, such an approach lacks the ability to make accurate
predictions for different GPU architectures, or even for the
same GPU at different core and memory configurations.

Song et al. used an artificial neural-network to train the
GPU power consumption [13], achieving better prediction
accuracy than other traditional regression based models.
However, neural network approaches usually create output



models of high complexity, where it is often hard to extract
its physical meaning.

Leng et al. integrated Hong’s power model inside the
GPGPU-Sim [38] simulator to form GPUWattch [12]. Sup-
porting both NVIDIA’s Tesla and Fermi GPU architec-
tures, GPUWattch can estimate the cycle-level GPU power
consumption during application execution. The considered
model assumes that the power consumption of a GPU
domain always scales linearly with its frequency[12, eq.6].
However, as it was previously shown (see Figure 2) this is
not always the case, because of the non-linear behaviour
of the voltage (see also Figure 6). Nath et al. also used
GPGPU-Sim to create a performance model for DVFS,
which could potentially be expanded to include a power
model [39]. However, such approach requires adding logic
to the GPU scoreboard, making it impossible to replicate
on real hardware. This type of approaches has been deemed
product-specific and difficult to apply on modern GPUs [14].

Abe et al. proposed DVFS-aware power regression models
for GPUs from the NVIDIA’s Tesla, Fermi and Kepler
generations [14], which separate the GPU power consump-
tion in core and memory domains, each proportional to
their corresponding frequency and associated performance
events. The models are estimated with linear regression by
using measurements taken at 3 different core and 3 different
memory frequencies. The proposed models achieved average
prediction errors of 15% for the Tesla GPU, 14% for
the Fermi GPU and 23.5% for the most recent Kepler
GPU. However, the authors do not disclose which set of
performance events are used in the model. Additionally,
despite performing the power consumption decomposition
in the core and memory domains, similar to the one herein
proposed, the authors do not consider the non-linear scaling
effects of the voltage.

Wu et al. studied how the performance and power con-
sumption of an AMD GPU scale with core and memory
frequency variations, as well as with different number of
cores [15]. These authors group GPU applications into
distinct clusters based on their characteristics, each rep-
resenting a different performance/power scaling. Neural-
network classifiers are used to characterize new applications,
by predicting which scaling factor better represents an
application. They achieve an average deviation of about 10%
on the tested GPU device. However, the model accuracy
is highly dependent on a set of fine-tuned parameters,
such as the number of clusters, which makes it difficult
to replicate on different architectures. More recently, in a
follow-up [40], a technique was proposed to optimize the
GPU energy efficiency by predicting the characteristics of
upcoming kernels, based on recent execution history.

VII. CONCLUSIONS AND FUTURE WORK

This manuscript presented a new DVFS-aware GPU
power model that is able to predict the power consumption

of the several GPU components for any frequency/voltage
configuration, by using the performance events gathered at
a single configuration. The proposed approach makes use
of an especially devised iterative algorithm that relies on
statistical regression and is able to model not only the
unknown characteristics of the underlying architecture, but
also to accurately predict how the GPU voltage scales with
the core/memory domain frequencies.

When used with a set of three different GPUs, represent-
ing the three most recent NVIDIA microarchitectures, the
proposed DVFS-aware power model accurately estimates the
power consumption with an average error of 7%, 6% and
12% on the Pascal, Maxwell and Kepler GPUs, respectively.
Particularly, in the Maxwell (or Pascal) GPU, the model
provides accurate results across a frequency range of 1.6×
(2.4×) for the core and 4.3× (1.2×) for the memory
frequencies.

The work herein presented opens the possibility for many
different future directions, one of which is the implemen-
tation of the proposed DVFS-aware power model in real-
time. This can be done by taking advantage of the iterative
nature of many of the most common GPU applications,
by measuring the performance events during the first call
to a GPU kernel and then using the power prediction to
determine the frequency/voltage configuration that best suits
that kernel. Additionally, the proposed model can be used
for the development of novel energy-aware GPU simulators
and for the energy-optimization of GPU applications.
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