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Abstract. Hyperarticulation is a speech adaptation that consists of
adopting a clearer form of speech in an attempt to improve recognition
levels. However, it has the opposite effect when talking to ASR systems,
as they are not trained with such kind of speech. We present approaches
for automatic detection of hyperarticulation, which can be used to im-
prove the performance of spoken dialog systems. We performed experi-
ments on Let’s Go data, using multiple feature sets and two classifica-
tion approaches. Many relevant features are speaker dependent. Thus, we
used the first turn in each dialog as the reference for the speaker, since
it is typically not hyperarticulated. Our best results were above 80%
accuracy, which represents an improvement of at least 11.6 percentage
points over previously obtained results on similar data. We also assessed
the classifiers’ performance in scenarios where hyperarticulation is rare,
achieving around 98% accuracy using different confidence thresholds.
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1 Introduction

When people face recognition problems by their conversational partners, they
tend to adopt a clearer form of speech in an attempt to improve recognition
levels. This speech adaptation is called hyperarticulation. However, although it
may work in child-directed speech or when talking to people with hearing impair-
ment, it typically has the opposite result when talking to an Automatic Speech
Recognition (ASR) system, decreasing its performance [17, 7]. This happens be-
cause ASR systems are not trained with hyperarticulated speech. Furthermore,
these situations typically occur in attempts to recover from previous recognition
errors. This means that the supposed correction will also be misrecognized, lead-
ing to further hyperarticulation and recognition errors, completely disrupting the
dialog flow [11].

Automatic detection of hyperarticulated speech is important because if a
dialog system is able to do so, it can try to recognize the utterance using ASR
models trained with hyperarticulated speech, or at least try to guide the user
towards the use of unmarked speech. Furthermore, automatic hyperarticulation



2

detection can be used to find possible causes of hot spots in a dialog, reducing
the need for manual annotations.

Our experiments on automatic detection of hyperarticulation were performed
on data from real user interactions with an Interactive Voice Response (IVR)
system along multiple years. In this paper we present several approaches to the
task, using multiple feature sets and classification algorithms.

The remaining sections are structured as follows: Section 2 presents the re-
lated work. Section 3 describes the datasets, features and approaches used. Re-
sults are presented and discussed in Section 4, and, finally, Section 5 states the
conclusions and suggests paths for future work.

2 Related Work

Hyperarticulation is widely accepted as an important factor that should be dealt
with by speech applications. However, not much effort has been put into its auto-
matic detection. Research involving hyperarticulation is usually directed towards
the evaluation of its impact in ASR and how systems can adapt to it or redirect
the users towards the use of unmarked speech. Nonetheless, there are multiple
studies that explore the characteristics of hyperarticulated speech. This is im-
portant for the automatic detection of hyperarticulation as those characteristics
help selecting relevant features for the task.

The work by Fandrianto and Eskenazi [5] on prosodic entrainment of shouting
and hyperarticulation is, to our knowledge, the only one that provides concrete
results for automatic hyperarticulation detection. The automatic detection ap-
proach consists of a Support Vector Machine (SVM) classifier trained using Let’s
Go [14] data from the years of 2009 and 2010 that had been used in previous
experiments [12]. In terms of features, the authors used a small set of six acoustic
features – fundamental frequency range and average, intensity, harmonic-noise
ratio, and pause duration and frequency –, extracted using openSMILE [4], and
two dialog-level features – ASR confidence and explicit confirm repetition. Using
this approach, the authors achieved 70% accuracy on a balanced test set.

Oviatt et al. [11] studied hyperarticulated speech and analyzed how a set
of features changed when people started to hyperarticulate. The analyzed fea-
tures involved durations of both speech and pauses, speech rate, amplitude,
fundamental frequency, intonation contour, phonological alternations, and dis-
fluencies. The authors reported a significant increase in both the number and
duration of pauses during hyperarticulated speech. On the contrary, the num-
ber of disfluencies reduced significantly. Also, the final fall in intonation, speech
elongation, and the use of hyper-clear phonology moderately increased. Finally,
minimum and average pitch slightly decreased.

Soltau and Waibel [18] analyzed hyperarticulated speech at the phone level
in order to develop acoustic models able to deal with that kind of speech. By
analyzing vowel formants, the authors only found significant differences for the
vowel /uw/. In terms of duration, all phones lasted longer during hyperartic-
ulated speech. However, the difference for consonants was two times the one
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for vowels. Also, the duration of voiced plosives increased over 40%. Finally, in
terms of the place of articulation, retroflex and labiodental sounds revealed no
dependence of hyperarticulated speech, while velar, alveolar, and bilabial sounds
revealed at least some level of dependence.

Stent et al. [19] also studied hyperarticulation at the phone level. The au-
thors paid special attention to the /t/ phone, specially when it comes before
an unstressed vowel, at the end of the word, or after an n, as its pronunciation
differs during clear speech. The presence of a full vowel in the definite article
a and of the /d/ phone in and was also analyzed. However, in these cases, the
studies showed no clear differences, which, according to the authors, may be
explained by the tendency to use clearer speech on content words rather than on
function words when repairing, as content words are more critical to understand
a message. Furthermore, the authors analyzed the vowel formants and concluded
that front vowels become even more fronted during hyperarticulated speech.

Overall, we can conclude that hyperarticulated speech is characterized by
changes in multiple acoustic-prosodic features, as well as articulatory changes in
specific phones.

3 Experimental Setup

This section describes our experimental setup, starting with the adopted datasets,
followed by the used feature sets, classification approaches, and evaluation method-
ology.

3.1 Datasets

In our experiments we used data from three years of The Let’s Go corpus. The
corpus features data from the CMU Let’s Go Bus Information System, which
provides information about bus schedules in the city of Pittsburg, through spoken
telephonic interaction with a dialog system. Subsets of the data from the three
years were annotated for hyperarticulation in a joint effort by L2F and KTH [8].
834 turns from 2009, 1110 from 2012, and 1449 from 2014 were annotated, out
of which 113, 90, and 77, respectively, were labeled as hyperarticulated. It is
important to notice that the system evolved over the years, both in terms of
ASR performance and dialog management. Thus, the characteristics of the data
change according to the year. Since the datasets are highly unbalanced, we bal-
anced them using the Spread Subsample filter provided by the Weka Toolkit [6]
to obtain datasets with the same number of examples of each class. We per-
formed experiments using each of the balanced yearly datasets individually, as
well as together in an aggregated dataset. Furthermore, we used the unbalanced
datasets for precision evaluation.

3.2 Features

Taking the characteristics of hyperarticulated speech mentioned in Section 2 into
account, we extracted sets of acoustic, segmental, and disfluency-based features
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that intend to capture some of those characteristics. Furthermore, we used the
ComParE 2013 feature set, since it is widely used in speech-related tasks.

ComParE 2013 The ComParE 2013 feature set [16], extracted using openS-
MILE, provides a large amount of acoustic-prosodic features and is widely used
in speech analytics tasks. Hyperarticulation is inherently related to acoustic and
prosodic factors, thus, this set may be suitable for this task.

Segmental Hyperarticulation is highly related to rhythmic and durational fea-
tures. The extraction of such features requires segmentation of the original audio
file into smaller, informative segments. We obtained a phone tokenization of the
audio using the neural networks that are part of our in-house ASR system [9].

From the segmentation directly, we extracted features related to phones –
count, total speech duration, average phone duration, speech ratio, and phone-
based speech rate – and pauses – count, total silence duration, average pause
duration, silence ratio, and silence-to-speech ratio. In terms of Inter-Pausal Units
(IPUs), i.e., sequences of phones between two pauses, we extracted the count,
rate, and 9 statistics – maximum, minimum, mean, standard deviation, median,
mode, slope, concavity, and range – of their duration, in seconds, and length, in
number of phones. The IPUs were also important for the extraction of acoustic
features, as described below.

Acoustic In terms of base acoustic features, we extracted energy, pitch, and
Harmonic-Noise Ratio (HNR) using openSMILE, with overlapping windows of
50ms, and a 10ms step. We also extracted normalized amplitude using SoX4.
We computed the same 9 statistics listed in the previous section for each of
the features, using the whole audio file. Furthermore, we computed the same
statistics for the data corresponding to each IPU in the audio file, and repeated
the same procedure to obtain IPU-based statistics for the whole file. Finally,
we also computed the same 9 statistics for pitch, discarding null values, that is,
those corresponding to unvoiced speech or non-speech.

Disfluencies As stated in related work [11], the number of disfluencies tends
to decrease during hyperarticulated speech. Thus, we counted the number and
calculated the ratio of IPUs that contained disfluencies. We took advantage of
the speech disfluency detection module [10] provided by the SPA5 [1] speech
analytics platform. However, it is important to notice that this module was
trained using data from the CORAL [20] corpus, which contains non-English
data.

4 http://sox.sourceforge.net
5 https://www.l2f.inesc-id.pt/spa/
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First Turn Differences Most of the characteristics of hyperarticulated speech
are speaker dependent. For instance, when hyperarticulated speech is character-
ized as slower, it is slower in relation to the normal speech rate of the person.
Since our dataset consists of turns extracted from human-machine dialogs, we
are able to extract all the previously described features from the first human turn
of each dialog. That turn is highly unlikely to contain hyperarticulated speech,
as the person has not faced recognition problems by the machine. Thus, it can
be used as a reference for the remaining turns in the dialog. Taking advantage
of this, we computed the difference between the value for each of the previously
described features and the corresponding value for the first turn in the same
dialog.

3.3 Classification

In our experiments, we considered the detection of hyperarticulated speech a
binary classification task. From the multiple classification approaches that could
be used, we opted for SVMs [3], which are widely used and typically produce
acceptable results, and Random Forests (RFs) [2], an approach based on decision
trees, which has been proved successful in experiments using similar data [15].

To train our SVMs, we took advantage of the Sequential Minimal Optimiza-
tion (SMO) algorithm [13] implementation provided by the Weka Toolkit. We
used the linear kernel and kept the C parameter with its default 1.0 value, as it
led to the best results in our experiments. We also took advantage of the Weka
Toolkit to train our RFs. Since the number of instances is small, it is affordable
to generate a large amount of trees. Thus, we used 1000 as the value of that
parameter.

3.4 Evaluation

In order to evaluate our approaches, we used two different procedures. One
that evaluated the importance of different feature sets for the task and the
performance of the different classification approaches, and one that evaluated
the capabilities of the approaches to adapt to real situations, with unbalanced
datasets.

For the first, we used 10-fold cross-validation on both each yearly balanced
dataset, as well as on the aggregated dataset. In this case, given the use of
balanced datasets, the binary nature of the task, and the objective of evaluating
the overall performance of the different feature sets and classification approaches,
we relied solely on accuracy as evaluation measure.

For the second procedure, we used all data from each year, in order to sim-
ulate a real situation, with rare occurrences of hyperarticulated speech. In this
case, in addition to accuracy, we also looked into precision, recall, and F-measure,
to identify the best confidence threshold that reduced the number of false posi-
tives without highly increasing the number of false negatives.
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4 Results

In this section we present the results obtained by the SVM and RF approaches
using the different feature set combinations.

4.1 Balanced Datasets

Table 1 presents the accuracy results obtained by the SVM and RF approaches
on the four datasets, using different feature sets. The table is split into three
subtables, which contain the results obtained using the ComParE 2013 feature
set, our acoustic-prosodic features, and the combination of the two. The rows
labeled as All refer to the results obtained using all features of each subtable’s
category. The sets labeled as Selected were obtained by applying the Best First
feature selection algorithm, with five consecutive nodes without improvement as
the stop criterion, to the corresponding All set.

Table 1. Accuracy results obtained using the SVM and Random Forest approaches
and the different feature sets.

Let’s Go 2009 Let’s Go 2012 Let’s Go 2014 All
Feature Set SVM RF SVM RF SVM RF SVM RF

ComPaRe 2013

Current Turn 0.668 0.717 0.761 0.750 0.727 0.773 0.689 0.748
1st Turn Difference 0.721 0.730 0.761 0.778 0.721 0.760 0.704 0.723
All 0.695 0.730 0.800 0.794 0.792 0.825 0.723 0.771
Selected 0.805 0.841 0.839 0.872 0.818 0.935 0.766 0.805

Acoustic-Prosodic

Amplitude 0.664 0.695 0.572 0.678 0.623 0.721 0.613 0.723
Energy 0.708 0.712 0.633 0.683 0.662 0.747 0.673 0.713
Pitch 0.655 0.655 0.656 0.661 0.649 0.675 0.639 0.679
HNR 0.606 0.686 0.611 0.672 0.682 0.682 0.613 0.675
Pitch + Energy 0.730 0.730 0.683 0.672 0.649 0.766 0.671 0.723
Acoustic 0.690 0.735 0.622 0.711 0.662 0.812 0.684 0.730
Segmental 0.664 0.646 0.661 0.667 0.675 0.721 0.666 0.673
Disfluencies 0.566 0.571 0.600 0.617 0.468 0.552 0.555 0.559
P + E + H + Sil [5] 0.655 0.677 0.611 0.711 0.636 0.695 0.655 0.718
All 0.637 0.708 0.622 0.689 0.591 0.721 0.670 0.725
Selected 0.695 0.739 0.622 0.712 0.766 0.812 0.718 0.738

Combination

All 0.699 0.735 0.772 0.783 0.773 0.792 0.720 0.764
Selected 0.827 0.836 0.844 0.861 0.812 0.922 0.761 0.816

The first important point to notice is that the RF approach systematically
obtained better results than the SVM approach. This suggests that at least
some of the features follow a distribution that is highly discriminative for the
hierarchical structure of decision trees. Thus, the following remarks will be based
on RF results.
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Starting with ComPare 2013 features, we can see that this feature set on
its own obtained accuracy results over 70% on every dataset, which defines a
relatively high baseline, already above the one defined by Fandrianto and Eske-
nazi [5]. The use of feature value differences between the current turn and the
first turn in the dialog improved the baseline results on every dataset except
the one from 2014. Furthermore, the combination of the two sets, All, improved
the results on every dataset. This proves the importance of the relation between
the current turn and the first in the dialog, reducing the effects of speaker de-
pendence. Performing feature selection on such a large set of features is very
important, as many features provide no information. This can be proved by the
results obtained by the Selected feature set, which are above 80% on every
dataset.

In terms of our acoustic-prosodic features, the results presented for each set
already contain the features related to the value differences in relation to the
first turn, since those features were always able to improve the results. Start-
ing with acoustic features, energy features were typically the most informative.
The combination of pitch and energy, a typical combination when acoustic fea-
tures are used, was able to achieve at least the same result as the best individual
acoustic feature class. Furthermore, by appending the remaining two classes, the
results improved for every dataset, surpassing the baseline for the 2009 and 2014
datasets. Segmental features were less informative, with accuracy results below
each single acoustic class. However, this can be explained by the disappointing
results obtained by some of the features in that set. For instance, speech rate
only achieved results below 60%. However, there were also positive results, ob-
tained by features based on durations, length, silence and speech. Still, in this
sense, durational features were more informative than the ones related to length
and the same happened with speech-based features in relation to silence-based
features. Disfluency-based features also obtained disappointing results, below
60% accuracy. However, in this case, the results can be explained by the fact
that the disfluency detector was trained using data in a different language. The
combination of pitch, energy, HNR, and silence, which approaches the set of
acoustic features used by Fandrianto and Eskenazi [5], achieved results similar
to the ones reported in their article, in spite of not including dialog-level fea-
tures. Furthermore, the combination of all acoustic-prosodic features was only
able to outperform the acoustic feature set when feature selection was applied,
leading to the best results in the subtable, but only with slight improvements.

Finally, by combining the ComParE 2013 set with our acoustic-prosodic fea-
tures, the result differences in relation to the case when only the first was used
were practically negligible, with an improvement of 0.5 percentage points on the
Let’s Go 2009 dataset and decreases up to 3 percentage points on the remaining
datasets. The results obtained by the Selected feature set have a similar rela-
tion with the ones obtained with the Selected set for the ComPaRe 2013 set.
However, in this case, the results were only improved on the aggregated dataset,
leading to our best result when using all data, with 81.6% accuracy.
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Overall, the obtained results show that this task benefits from the use of
large feature sets, out of which the most important features can be selected
using automatic methods. Furthermore, differential features are important to
reduce the effects of speaker dependence. Finally, the information provided by
the ComPaRe 2013 feature set seems to be similar to the one provided by our
acoustic-prosodic features, since, in general, the combination of both sets did
not lead to improved results.

4.2 Unbalanced Datasets

Although we used balanced datasets to train our classifiers, we want them to be
able to deal with real situations, where hyperarticulated speech is rare and the
focus is on identifying such situations with precision. To assess that capability,
we classified all instances of each yearly unbalanced dataset using an RF classifier
trained on the aggregated balanced dataset with the Selected set of ComPaRe
2013. The first row of Table 2 shows the results obtained by the classifier on each
dataset. We can see that, although recall values are high, which means that hy-
perarticulated speech is identified when it really exists, precision values are low,
which means that there are many misclassified examples of non-hyperarticulated
speech. This was expected given the lack of balance of the datasets, and we can
see that precision decreases as the level of balance decreases. However, these
results go against the objective of identifying hyperarticulation with precision.
Thus, we looked into the levels of confidence reported by the classifier and per-
formed experiments using different confidence thresholds.

Table 2. Accuracy, Precision, Recall, and F-measure results obtained on the unbal-
anced datasets using different Thresholds.

Let’s Go 2009 Let’s Go 2012 Let’s Go 2014
T A P R F A P R F A P R F

50% 0.807 0.412 1.000 0.584 0.770 0.261 1.000 0.414 0.669 0.138 1.000 0.242
80% 0.982 0.971 0.894 0.931 0.986 0.920 0.900 0.910 0.970 0.649 0.935 0.766
85% 0.965 0.988 0.752 0.854 0.968 0.966 0.633 0.765 0.985 0.877 0.831 0.853
90% 0.912 1.000 0.354 0.523 0.950 1.000 0.389 0.560 0.972 1.000 0.468 0.638

By analyzing the confidence levels, we noticed that the highest confidence
value for an example mistakenly classified as hyperarticulated was 89.6%. In
Table 2 we can see that using a fixed threshold of 90% effectively increased
precision levels. However, as a trade-off, recall was drastically reduced, which
means that many hyperarticulated examples were not identified. We defined two
more fixed thresholds – 80% and 85% –. We can see that the threshold leading
to the higher F-value tends to increase as the level of balance of the dataset
decreases. This hardens the process of selecting a generic threshold. However,
we suggest values between 80% and 85%.
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Finally, it is important to notice that by performing threshold changes we
were able to obtain accuracy results around 98% for every dataset. These values
are always above the ones obtained by a chance classifier – 86.5%, 91.9%, and
94.7% for the 2009, 2012, and 2014 datasets, respectively.

5 Conclusions

In this article we presented our approaches on automatic detection of hyper-
articulation. We used multiple feature sets and two classification algorithms –
SVMs and RFs –, with the latter systematically outperforming the widely used
SVMs.

In terms of features, we discovered that this task benefits from large sets
of features, out of which the most important can be selected using automatic
approaches. This was proved by the results obtained using the ComPaRe 2013
feature set and the combination of all the features we extracted. Furthermore,
the feature value differences between the turn being classified and the first in the
dialog revealed to be very important features, due to the speaker dependence of
many of the extracted features. On the other hand, speech rate and disfluency-
based features produced disappointing results, in spite of being classified as
relevant features for hyperarticulation detection in the literature.

We achieved accuracy results over 80% on each balanced yearly dataset, as
well as on the aggregated dataset. These results surpass the ones obtained by
Fandrianto and Eskenazi [5] on similar data by at least 11.6 percentage points.

By modifying the confidence thresholds, we were able to obtain accuracy re-
sults around 98% on every unbalanced dataset, while maintaining high precision
values.

As future work, we intend to explore features extracted at the phone level,
such as the ones described by Soltau and Waibel [18] and Stent et al. [19].
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