
Data-driven application configuration

David M. de Matos and Nuno J. Mamede

L
�
F/INESC-ID/IST - Spoken Language Systems Laboratory

Rua Alves Redol 9, 1000-029 Lisboa, Portugal
david.matos@inesc-id.pt, nuno.mamede@inesc-id.pt

Abstract
Constructing modular applications from existing parts is difficult if there are mismatches due to input or output semantic differences
during module interconnection. In order to minimize the effort of building such applications, and also as a guideline for designing
modular applications from scratch, we propose an architecture in which modules are able to interface with each other without having to
be reprogrammed. The architecture can be completely described using a small number of concepts. These factors allow rapid application
building and reconfiguration with minimal manual intervention, potentiating module reuse and reducing the effort invested in building
new applications.

1. Introduction
When building modular applications, it is possible to

use parts that have been constructed by third parties, that
solve part of the global problem. While this way of work
is desirable because it promotes reuse, reducing the global
development effort, it is all but straightforward: in fact, in-
tegrating foreign modules is almost never a simple task.
The integration effort may become so expensive that it may
seem better to build everything from scratch.

Managing these architectures is, thus, a challenging task
and their complexity can be a serious hurdle when trying to
bring together different components. Although not limited
to the group, this problem also occurs when building natu-
ral language processing (NLP) applications and on various
levels: from file-format handling or network-level commu-
nication to interaction between modules in a large applica-
tion.

Here, we are concerned primarily with the latter aspect,
even though the discussion could be applied to other levels,
e.g. communication issues in a distributed application. We
consider such lower-level aspects transport issues, though,
that may be dealt with separately. Thus, CORBA (OMG,
nda) and similar architectures are not an issue, since what
we are concerned with is the way modules within an appli-
cation exchange data and how to describe the way they do
it.

We have two goals: to define a uniform way for modules
to produce/consume data; and to define a uniform module
interoperability model. We intend for these aspects to be
realized complementarily: the latter will be a consequence
of the former. In aiming at reaching these goals we are also
promoting reuse and easy construction/configuration, since
we provide a way for describing module interfaces for use
with existing resources.

This document is organized as follows: the data model
is defined in section 2.; a working example is presented in
section 3.; and, finally, some concluding remarks and direc-
tions for evolution are presented.

2. Model
This section presents the architectural model. The first

part presents structural aspects; the second part details the

data model; the third part deals with semantics; and the
fourth part details the implied application specification.

2.1. Structural aspects

We consider modular applications in which the modules
exchange data through connections between their ports.
These objects as well as their properties and relationships
are presented here.

Definition 1 (portsets) Let
�

be the set of all modules in
an application. For a module � , the following portsets are
defined: ��� (all output ports); ��� (all input ports); and� �
	
�������� (all ports). In addition, ����������	�� .
We use ���� to denote the � -th port of � (� ranges over the
corresponding portset).

The definition for connection, while still a structural as-
pect, is better presented below (see def. 6).

2.2. Data model

Definition 2 (unrestricted grammar) Unrestricted gram-
mars (Lewis and Papadimitriou, 1981, def. 5.2.1.) are
quadruples ��	����! #"$ &%' &(*) , where � is an alphabet; "
is the set of terminal symbols ("�+,�); ���.-/"�) is the
set of nonterminal symbols; (is the start symbol; and %
is the set of rules (finite subset of ���10����2-3"�)4�506)�7��50).
Direct derivation (eq. 1), derivation (eq. 2), and generated
language (eq. 3) are defined as follows:

8:9
G ; iff <>=� ?< �A@ � 0 B� 8DC ;

C) @ %'
8 	
< = 8 C < �!E ; 	F< = ;

C < �
(1)

<�G 9
G
< = 9

G HIHBH
9

G
<KJMLN<OG 09

G
<KJ (2)

P �Q�R)�	TSB<�UV< @ " 0 E (09
G
<RW (3)

" is the union of three disjoint sets (eq. 4): "KX , the keyword
set – the vocabulary for data description; "ZY , used for writ-
ing data items; and " � , used for writing intrinsic syntactic
elements.

"[T"�X��\"�Y��]" � (4)

Definition 3 (data grammar; type grammar) Consider
port � and two grammars (as in def. 2): ^�1�_�D) – for

writing data (the down-turned mark refers to data grammar
entities); and ��1�_�D) – for writing datatypes (the upturned
mark refers to datatype grammar entities).

These grammars must share the keyword set (denoted
by
� �_�D) (eq. 5)) and must be such that entities belonging

to
P ����1�_�D)?) describe the datatypes of the entities belonging

to
P � ^�1� ��)4) . Each of the former entities works as a third

grammar restricting ^�1�_��) : it is used to validate data written
according to the lowermost-level grammar.

^"�X �_�D)!	 �"�X �_��)�	 � �_�D) (5)

Definition 4 (data; datatype; correctness; validity)
Consider port � : ����� �_��) @ P � ^�1�_��)4) denotes the data at
� . We define port datatype, ��� � �_��) @ P � ��1� ��)?) , as a data
type specification according to

P � ^�1� ��)?) and
P � ��1�_��)4)

(the third-level entities mentioned before). The following
relation exists between a datastream and its associated
datatype:

��� � � ��)
	������ �_�D) (6)

Data is correct if it belongs to the language generated by
the associated grammar: ����� � ��) @ P � ^�1� ��)4) , by definition;
but it may happen that ����� ���)��@ P � ^�1�_��)4) (for some other
port) – in this case, ����� ���) would be incorrect according
to ^�1�_�D) .

Data is valid if ���6� �_�D)�	������ � ��) , i.e., the data stream
follows the datatype definition (besides respecting the un-
derlying grammar’s rules).

The complete discussion of ��� � �_��) would only be com-
plete taking into account the semantics of

P ����R) , but that is
out of the scope of this document.

Taking into account the definitions in this section, we
now give an example. Consider port � and a data represen-
tation containing the following XML (W3C, 2001a) frag-
ment:

����� � ��)!	
[...]

<class name="nc">dog</class>

[...]

Then the terminal symbol sets would be (at least):

^" � � ��)*	 S < > = / " W
^" X �_�D)*	 � � ��)!	2S class name W
^"�Y � ��)!	2SB<�U#<��@ ^" � � ��) � � � ��)#W

Consider a datatype description, for the data represen-
tation above, of which the following XML Document Type
Definition (DTD) fragment is a part:

��� � �_�D)*	
[...]

<!ELEMENT class (#PCDATA)>

<!ATTLIST class name CDATA #REQUIRED>

[...]

Then the terminal symbol sets would be (at least):

�" � �_��)*	 S < > ! # ELEMENT PCDATA
ATTLIST CDATA REQUIRED W

�" X � ��)*	 � �_��)*	 S class name W
�"�Y � ��)*	 SB<�U#<��@ �" � �_��) � � � ��)VW

Thus verifying the grammar pair selection conditions
(def. 3 and eq. 5).

2.3. Semantic aspects

This section deals with semantic aspects and restrictions
that have to be observed when handling connections.

Each module has sole control over its internal seman-
tics, in particular, in what concerns data semantics (defined
by the receiver).

Definition 5 (semantics) Consider port � and some inter-
pretation function � (defined by the module’s inner se-
mantics): ���6� �_��) denotes the semantics required at � for
normal processing behavior; ���6� ������� � ��)?) represents the
data stream’s semantics at � : computed by � (eq. 7). The
data stream’s semantics must subsume the port’s semantics
(eq. 8).

���B� ������� �_�D)?)!	�� ������� �_�D)?) (7)

���6� � ��)������B� ������� �_�D)?) (8)

Although we have no way of knowing how a module
will interpret a piece of data, we can still write the follow-
ing relations if we consider � , the function denoting its ar-
gument’s domain, and � the usual identity operator:

� ��� � � ��)
	������ �_��)! L� � �����6� �_�D)?)"������� ������� � ��)&)?)# (9)

and thus (from 7, 9, and � ’s definition):

���B� ������� �_�D)?) @ � ����� � �_�D)?) (10)

Definition 6 (connection) Consider modules � and $ and
ports � �� @ � � and J% @ � J . Let predicate &(')$*�_� �� * J%) be
true if a connection exists between the pair. In the seman-
tics domain, the output port’s semantics must subsume the
input’s, i.e., condition 11 must be met.

���B� �� J%)������6� � � ��$) (11)

Definition 7 (semantics mapping function) When estab-
lishing a connection between two ports, �D�� and J% , if
��� � � � ��)+�	���� � �� J%) , we need a semantics mapping func-
tion, , �+- J� - % , for translating semantics across the connection
(eq. 12, but also eq. 13). Furthermore, for the ports to be
connectable, the receiving port’s semantics must be sub-
sumed by a transformation of the semantics of the previous
module’s output (cond. 14).

, �.- J� - %0/ ��� � �_� ��)213��� � �� J%) (12)

, �+- J� - %0/ P � ^�1�_� ��)4)21 P � ^�1�� J%)4) (13)

���6� ������� �� J%)?)������6� ��, �+- J� - % ������� � � ��)?)4) (14)

It is impossible, however, to guarantee a correct trans-
lation in the semantics domain, since, ultimately, input se-
mantics is defined by the data consumer: we approach se-
mantics conversion through datatype-directed data conver-
sion. Since this conversion uses outside information about
the ontologies of both sender and receiver, , �+- J� - % cannot be
automatically generated solely from the information avail-
able at each end. Nevertheless, , �+- J� - % can be defined exten-
sionally for each ��� � � ����) .

We assume that it is always the receiver’s responsibility
to convert the data, since the data producer may be unable
to determine how its results will be used. In the current
discussion, we will also assume that condition 14 always
holds, either because , �+- J� - % can satisfy it or, if that is not the
case, because missing data parts can be supplemented by
defaults when computing ���6� �� J%) .
2.4. Specifying the application

The model above gives rise to a data-oriented module
interconnection architecture in which modules send/receive
information to/from each other through typed channels that
are uniquely defined by the datatypes at each end-point and
by the corresponding translation function.

Since the architecture is not concerned with the mod-
ules’ inner semantics, all that is needed to describe it com-
pletely are the collections of port datatypes and translation
functions associated with connected ports. These collec-
tions are represented, respectively, by � , the datatype ma-
trix, and by � , the translation matrix.

The datatype matrix is defined for all modules and their
ports. Entries that do not correspond to actual ports are
empty.

�
������� 	

�	
 ��� � �_� ���=) HBHIH ��� � � � ��=)
...

...
��� � �_� ����) HBHIH ��� � � � � �)

���� (15)� ��� � � �F� ���
����� ��� � �)�

����� � =�� �!� � � �� �@ � � 9 ��� � � � ��)�	�� (16)

The translation matrix is defined for all connected ports:
one function for each connection. In all other cases, � is
undefined.��	#" , �+- J� - % &(')$*� � �� * J%) (see def. 6)

undefined otherwise
(17)

3. A small example
This example simplifies the model in important ways:

all data flowing between ports is represented in XML and
all datatypes can be specified either using DTDs or XML
Schemas (XSD) (W3C, 2001d). Thus, in principle, all mis-
matches are due to variations in the XML data type defini-
tions.�

����� �%$ - &��('*) O^� �_��)"� ^�1���) �� � ��)"�0��1���) (18)

unless (only keywords are different)�
����� � $ - &��(') ��� � � ��)+�	����6� ���) 9 � �_��)+�	 � ���) (19)

In our example, all datatypes have been described using
DTDs and all necessary , �+- J� - % functions have been specified
by Extensible Style Sheet (XSL) (W3C, 2001b) templates.
By specifying all DTDs and XSL templates, the application
becomes completely defined from the point of view of its
data exchange paths.

The rest of this section will particularize further each of
these aspects.

3.1. The application

The example application performs syntactic analysis of
natural language sentences (fig. 1).

Figure 1: The example application.

The application consists of three modules:
Smorph (Aı̈t-Mokhtar, 1998) (morphological ana-
lyzer); PAsMo (Paulo, 2001) (rule-based rewriter); and
SuSAna (Hagège, 2000; Batista, nd) (syntactic analyzer).

We consider only ports dealing with the data stream to
be processed, thus ignoring those used for reading static
data (such as dictionaries). Furthermore, in the follow-
ing we will focus on the connection between Smorph and
PAsMo, since the other relevant connection (that between
PAsMo and SuSAna) is analogous.

3.2. The application ports

The relevant ports are Smorph’s output (�) and PAsMo’s
input (�). To describe the data flowing through them, we
need to specify just ��� � � �6) and ���6� �_�D) (eq. 15 and figures 2
and 3). Smorph’s output will be translated before being

<?xml version="1.0" encoding="iso-8859-15"?>
<!ELEMENT pasmo-in (word)*>
<!ELEMENT word (class)*>
<!ATTLIST word text CDATA #REQUIRED>
<!ELEMENT class (flag)*>
<!ATTLIST class root CDATA #REQUIRED>
<!ELEMENT flag EMPTY>
<!ATTLIST flag name NMTOKEN #REQUIRED>
<!ATTLIST flag value CDATA #REQUIRED>

Figure 2: DTD for PAsMo’s input port, corresponding to
��� � � ��) .

used by PAsMo. Note that Smorph’s is a more expressive
description (thus obeying condition 11), and that some in-
formation will be lost in the conversion (not a problem as
long as condition 14 remains true).

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<!ELEMENT smorph (item)*>
<!ELEMENT item (root)*>
<!ATTLIST item value CDATA #REQUIRED>
<!ELEMENT root (class)*>
<!ATTLIST root value CDATA #REQUIRED>
<!ELEMENT class (flags,flags)>
<!ATTLIST class type (0|mi) "0">
<!ELEMENT flags (flag)*>
<!ATTLIST flags level (1|2) #REQUIRED>
<!ELEMENT flag EMPTY>
<!ATTLIST flag name NMTOKEN #REQUIRED>
<!ATTLIST flag value CDATA #REQUIRED>

Figure 3: DTD for Smorph’s output port, corresponding to
��� � � �6) .

3.3. The translation step

The only relevant transformation, ,�� -
$
, is the one map-

ping Smorph’s output to PAsMo’s input. It is implemented
as a XSL transformation step and is completely specified
by the set of XSL templates (figure 4) that map between
data described according to Smorph’s DTD and PAsMo’s.

4. Related work
This work is related with several fields. The first

is the field of data modeling, especially in what con-
cerns very high-level modeling, such as the one done
using UML (OMG, ndb). Specifications done in UML
can be described using the XML Metadata Interchange
(XMI) (OMG, 2002) specification that can then be used to
specify the XSDs for the data being sent/received on a mod-
ule’s ports. This is useful because it allows us to describe
graphically each module and its interconnections and, by
extension, an entire application.

Since we plan on evolving in the direction of ser-
vice specification(see sec. 5.), we have considered work
in this area. One such is IBM’s Web Services Flow Lan-
guage (Leymann, 2001) which can be used for specifying

<?xml version=’1.0’ encoding=’iso-8859-1’ ?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<xsl:output method="xml"
encoding="iso-8859-15"
doctype-system="pasmo-in.dtd"/>

<xsl:template match="/smorph">
<pasmo-in>

<xsl:apply-templates/>
</pasmo-in>

</xsl:template>
<xsl:template match="item">

<word text="{@value}">
<xsl:apply-templates/>

</word>
</xsl:template>
<xsl:template match="root">

<class root="{@value}">
<xsl:apply-templates
select="class/flags/flag"/>

</class>
</xsl:template>
<xsl:template match="flag">

<flag name="{@name}" value="{@value}"/>
</xsl:template>
</xsl:stylesheet>

Figure 4: The translation specification in XSL, correspond-
ing to ,�� -

$
.

multiple aspects of web services. This language is also lay-
ered on top of others: Web Services Description Language
(WSDL) (W3C, 2001c) and Web Services Endpoint Lan-
guage (WSEL) (Leymann, 2001). Although this structure
closely parallels what we intend in our work, it has a differ-
ent focus and does not invalidate our proposal.

The third area is that of communication systems, which
typically define module interconnection architectures. An
example is CORBA. Another, of particular interest for NLP,
is the Galaxy Communicator (MIT, 2001; DAR, nd). This
architecture is a distributed, message-based, hub-and-spoke
infrastructure optimized for constructing spoken dialogue
systems. It uses a plug-and-play approach that enables the
combination of commercial and research components. It
supports the creation of speech-enabled interfaces that scale
gracefully across modalities. In this context, our proposal
enables easy specification of Galaxy applications. At a dif-
ferent level, our specifications can be gracefully translated
into hub scripts and server interface definitions.

In the context of reference architectures, such as the
ones proposed by the TIPSTER (TIP, nd) or RAGS (ITRI,
nd) projects, our model may prove useful in facilitating in-
tegration of external modules into the frameworks defined
by those architectures. Note that, unlike most software in-
frastructures for Language Enginnering research and de-
velopment, e.g. GATE (Cunningham et al., 1996), our
model does not say anything about any module’s function
or impose any restrictions on their interfaces and is, thus,
application- and domain-independent. This is so because
the model is exclusively concerned with the data streams
flowing between modules and the relations between their
semantics at each end and not with the way each stream
is used, i.e., the model is not directly concerned with
application-related issues. In this sense, the model could be
used to describe a kind of “smart glue” for use with other

architectures, e.g. in integration efforts of existing modules
into GATE’s CREOLE sets, or in datatype management.

Other application-development or intercommunication
infrastructures may benefit from using a high-level specifi-
cation such as the one we propose here.

5. Conclusions and future directions
Our approach is useful for application development,

since it focuses exclusively on the inputs and outputs of
each module, without regard for module internals. This
contributes to significant dependency reductions, for the
modules can be almost anything and run almost anywhere,
as long as a communications channel (according to our re-
strictions) can be established between them.

We envision various directions for future work.
The first is to provide higher-level service specifications

on top of port descriptions. This would allow services to be
defined using the descriptions of its inputs and outputs and,
rather than exhaustively describing each port and its data,
we would be able, at that higher abstraction level, to simply
specify the name of the service. The rest would follow from
lower-level descriptions.

Also, along the lines of higher-level abstractions and
services, it would be interesting to try and specify auto-
matic translation functions (, �+- J� - %) based on service seman-
tics. Of course, this would mean that semantics would have
to be specified in some way as well.

Both these approaches would help to integrate user-
developed modules and help integrators to develop trans-
formation steps that cannot be wholly automatically gener-
ated.

Another direction worth considering is the construction
of module and application servers: modules or pre-built ap-
plications would be presented, e.g. via a web browser, en-
abling users to specify custom applications.

6. References
S. Aı̈t-Mokhtar. 1998. L’analyse présyntaxique en une

seule étape. Thèse de doctorat, Université Blaise Pascal,
GRIL, Clermont-Ferrand.

Fernando Batista. n.d. Análise sintáctica de superfı́cie e
coerência de regras. Master’s thesis, Instituto Superior
Técnico, UTL, Lisboa.

Hamish Cunningham, Yorick Wilks, and Robert J.
Gaizauskas. 1996. Gate – a general architecture for text
engineering. In Proceedings of the 16th Conference on
Computational Linguistics (COLING96), Copenhagen.

DARPA, n.d. DARPA Communicator. See:
www.darpa.mil/ito/research/com/index.html.

Caroline Hagège. 2000. Analyse syntaxique automatique
du portugais. Thèse de doctorat, Université Blaise Pas-
cal, GRIL, Clermont-Ferrand.

ITRI, nd. RAGS – A Reference Architecture for
Generation Systems. Information Technology
Research Institute, University of Brighton. See:
http://www.itri.brighton.ac.uk/projects/rags/.

Harry R. Lewis and Christos H. Papadimitriou. 1981. Ele-
ments of the Theory of Computation. Prentice-Hall, En-
glewood Cliffs, NJ. ISBN 0-13-273426-5.

Frank Leymann, 2001. Web Services Flow Language
(WSFL 1.0). IBM Software Group, May. See also:
xml.coverpages.org/wsfl.html.

MITRE Corporation, 2001. DARPA Communicator, May.
See: http://fofoca.mitre.org/.

Object Management Group (OMG), 2002. XML Metadata
Interchange (XMI) Specification, v1.2, January. See:
www.omg.org/technology/documents/formal/xmi.htm.

Object Management Group (OMG), n.d.a. Common
Object Request Broker Architecture (CORBA). See:
www.corba.org.

Object Management Group (OMG), n.d.b. Unified Mod-
elling Language. See: www.uml.org.

Joana Lúcio Paulo. 2001. Aquisição automática de termos.
Master’s thesis, Instituto Superior Técnico, UTL, Lisboa.

NIST, nd. TIPSTER Text Program. See:
http://www.itl.nist.gov/iaui/894.02/related projects/tipster/.

World Wide Web Consortium (W3C), 2001a. Extensible
Markup Language. See: www.w3c.org/XML.

World Wide Web Consortium (W3C), 2001b. The Extensi-
ble Stylesheet Language. See: www.w3.org/Style/XSL.

World Wide Web Consortium (W3C), 2001c. Web Ser-
vices Description Language (WSDL) 1.1, March. See:
www.w3.org/TR/wsdl.

World Wide Web Consortium (W3C), 2001d. XML
Schema. See: www.w3c.org/XML/Schema and
www.oasis-open.org/cover/schemas.html.

