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Abstract
In previous work, it has been shown the feasibility of us-
ing an isolated sound effect corpus to train Audio Event De-
tectors (AED) for real life data. Thus, one can avoid the
time-consuming task of manually annotating large amounts of
movies, documentaries, TV shows or any other kind of data of
interest. However, obtaining a quality sound effect corpus is
still a tough task particularly when a large number of acous-
tic events is considered. In this case, unsupervised techniques
able to classify semantic concepts can be very useful to avoid as
much as possible the need for listening to the audio samples. In
this paper, preliminary experiments involving hierarchical clus-
tering of sound patterns are described. Both intra- and inter-
concept clusterings have been carried out, at pattern level and
at concept level by using means and variances of the set of se-
lected features. Parameters of single mixture Gaussian models
have also been used to identify audio concept similarities. Clus-
ters of concepts with strong similarities between them have been
obtained, both from the perceptual point of view and the seman-
tic point of view. Additionally, these results are planned to be
used to design an AED system that would have a hierarchical
architecture.

1. Introduction
This paper describes preliminary work done in the framework
of the VIDIVIDEO European project, whose goal is to sub-
stantially enhance semantic access to video, implemented in a
search engine, by detecting instances of audio, visual or mixed-
media content. The Audio Event Detection (AED) task consists
of detecting all kinds of audio events, for example an emergency
car passing by, a gun shot, animal cries, etc. Since a main re-
search direction in the project is to try to model many distinct
semantic concepts [1], hierarchical clustering appeared to be a
suitable approach to avoid the time-consuming task of listening
to all the audio samples, used to train detectors.

Hierarchical clustering (HC) is also calledagglomerative
clusteringin the case of iteratively merging patterns into big-
ger clusters, ordivisive clusteringin the inverse case. It tries
to discover structure in a data set withouta priori knowledge,
so that data items within each cluster are more closely related
to one another than to items assigned to other clusters, in terms
of a predefined distance [2, 3]. For instance, HC has been used
in speech recognition to cluster texts collected from the Web, to
build topic dependent text corpus, without supervision [4, 5, 6].
Many variants of the clustering algorithm exist, but no method
is known to perform universally better than others [3]. By using
the agglomerative approach, once the clustering is finished, all
patterns will be clustered into a single cluster. The clusters that
best describe the structure of a data set can be identified by stop-
ping the clustering process when the model is satisfying. In our
case, clustering was performed entirely, and clusters have been

identified by cutting dendrograms at heights that gave ”natural”
results.

HC is commonly used to build a taxonomy of classes. In
[7], hierarchical taxonomies for musical instrument classifica-
tion are automatically derived from clustering. HC can also be
used to detect outliers. In our case, outliers are sound patterns
that are not representative of a semantic concept. For example,
a Woodpecker that would peck instead of sing should be re-
moved from the training set of thebird concept, if this concept
is supposed to describe only singing birds.

In the literature, the sound detection and identification sys-
tem named SOLAR [8], and systems for musical instrument
classification [9, 10], use a hierarchical architecture. Large cat-
egories of sounds are considered first, for example sustained
and non-sustained sounds, and then more precise classes are
detected. In this study, agglomerative clustering aimed also
at defining without knowledge the sound classes that could be
used in a hierarchical detection system.

After describing briefly the data set and the features used in
this study, intra- and inter-concept clustering results are given,
by showing dendrograms. Then clustering results on means and
variances of one mixture Gaussian models, trained on all sound
patterns of every concept are analyzed. Finally, a brief descrip-
tion of how these results could be used to design a hierarchical
AED system is given.

2. Data description
All the sound patterns are part of a subset of a sound effect cor-
pus provided by B&G, one of the partners of the VIDIVIDEO
project. Sound effects differ from real sounds found in videos,
in that they are isolated audio events, and quite homogeneous
from the beginning to the end of each file. In real videos, au-
dio events are very often simultaneous, such as singing birds
with sea noise in the background for example. Typically, sound
effects are also recorded with very good acoustic conditions,
which is not always the case in common video recordings. Nev-
ertheless, the use of sound effects allows to avoid the morose,
time-consuming and expensive task of manual labeling videos.
Furthermore, previous detection experiments showed the fea-
sibility of this approach, by successfully detecting birds, ma-
chines, traffic, water and steps, with training one-against-all de-
tectors with a pilot sound effect corpus [1].

All the sound effect files are sampled at 44.1kHz, although
the original sampling frequency was not always that high. In
this study, twenty-three semantic ”concepts” have been used.
Table 1 shows the number of patterns and the total duration, for
each concept, excluding the silence (very low energy) frames.
As can be seen, some concepts are less represented in compari-
son to others. More than one hour of data is available forwater,
whereas there are only a few minutes for both types of ring-



tones (analogicanddigital telephone).
The conceptsbird, cat, chicken, dogconsist of vocal sounds

of these animals, whereashorseis comprised of the noise pro-
duced by walking or trotting horses.Applausestands for crowd
applause. Siren combines different kinds of emergency and
police car sirens, modern and old ones. Many distinct water
sounds are assigned to thewaterconcept: heavy rain on asphalt,
water falls, fountains, rivers, etc.

Concepts Abb. Nb of patterns duration
jet airplane jet 18 11min 16s
propeller airplane pro 39 19min 13s
applause ap 20 11min 3s
bird bir 62 41min 22s
bus bus 23 28min 46s
car car 64 32min 0s
cat cat 26 5min 2s
chicken chi 11 2min 40s
dog dog 30 13min 11s
fire fir 35 45min 57s
gun gun 74 10min 14s
helicopter hel 17 11min 14s
horn ho 53 6min 25s
horse hor 57 29min 30s
insect buzz buz 19 17min 10s
insect chirp ch 22 32min 0s
siren sir 32 9min 58s
analogic telephone bell 11 3min 26s
digital telephone dig 9 2min 1s
thunder thu 34 6min 39s
traffic tra 21 43min 35s
typing typ 21 46min 50s
water wat 48 65min 42s

Table 1: Number and durations of patterns given for each of the
23 concepts. Column 2 gives the abbreviations used in tables
and figures.

3. Feature set
As a feature set, 19 Perceptual Linear Prediction (PLP) coeffi-
cients and their derivatives, Zero Crossing Rate (ZCR), Bright-
ness (BN) and Bandwidth (BW), that are respectively the first
and second order of spectrograms, have been used. All the 41
features have been computed within 0.50s frames with a 0.25s
shift. For the clustering at pattern-level, with results given in
sections 4.1 and 4.2, feature means and variances over all signal
duration are used. At concept-level, the clustering, with results
given in the second part of section 4.2, is computed over means
and variances of single mixture Gaussian models trained over
frame-based features.

4. Experiments
This section illustrates the clustering results with the help of
dendrograms, which consist of many ’U-shaped’ lines connect-
ing objects in a hierarchical tree. The height of a ’U’ represents
the distance between the two connected patterns or clusters.

At each iteration of the clustering, two patterns or clusters
of patterns are merged, and the distance between the new cluster
and the other patterns need to be updated. We chose to update
distances using the group averaged link method [2]. With this
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Figure 1: Dendrogram for thesirenconcept. Y-axis represents
cluster distances.

method, the distanced(A, B) between two clustersA andB,
given in equation 1, is the mean of the distances between every
pair of patternsx andy, with one pattern from each cluster.

d(A, B) =
1

card(A)card(B)

X

x∈A,y∈B

d(x,y) (1)

Various distancesd(x,y) have been tested: two Euclidean
distances, the weighted Gaussian distance used to cluster Hid-
den Markov Model states characterized by multivariate single
mixture Gaussians in the HTK toolkit ([11], p.268), and the
common Mahalanobis distance. The first Euclidean distance,
given in equation 2, computes the Euclidean distance between
the mean vectorsµx andµy, and will be called the “classical”
Euclidean distance in this article. Used in section 4.2 only, a
variant takes into account the standard deviation, as if it were
a parameter similar to the means. This second Euclidean dis-
tance, called “modified” Euclidean distance, is given in equa-
tion 3, with σx andσy being the standard deviation matrices.
It should be noted that in this study, only diagonal covariance
matrices are used.

d(x, y) = (µx − µy)t(µx − µy) (2)

d(x, y) = (µx−µy)t(µx−µy)+ (σx−σy)t(σx−σy) (3)

To avoid large feature values (typically ZCR, BW and BN
values) swamping the small ones (typically the PLP and PLP
derivative values), a linear data scaling to the range[0, 1] is
performed before clustering. Input values feeding the HC al-
gorithm are equalized by a scaling coefficient that is different
for each feature: for a feature valuexi, its equalized value is
(xi −mi)/(Mi −mi), wheremi andMi are respectively the
minimum and maximum values of theith feature to whichxi

belongs to.
The various distances gave different clusters. The two Eu-

clidean distances gave the most satisfying clusters, in a semantic
and perceptual point of view, thus only the results achieved with
these two distances will be reported here.

4.1. Intra-concept clustering

Intra-concept clustering has been performed to see if character-
izing concept examples with only feature means and variances
is precise enough to identify different types of sounds within a



Figure 2: Spectrograms of the siren types I, II, III.
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Figure 3: Dendrogram for thebird concept.

same concept. As an illustration, clustering results for thesiren
andbird concepts will be presented.

As shown in Table 1, thesiren concept includes 32 pat-
terns, totaling almost ten minutes of non low-energy audio sig-
nal. These patterns come from different types of police car, fire
truck, ambulance and other types of emergency vehicle sirens.
Figure 1 shows the dendrogram obtained for this concept. Two
distinct clusters, colored in red and blue, emerge from this clas-
sification. By listening to the audio examples, three types of
sirens, named type I, II and III, can be identified. Spectrograms
of three representative excerpts are given in Figure 2. Type I
corresponds to two tone sirens, like those of old emergency cars.
Type II are characterized by a fast continuous variation between
two tones, and type III consists of slow continuous variations up
and down in the frequency spectrum, like some typical USA po-
lice car sirens. Perceptually, types I and II are somehow similar.
The red cluster in Figure 1 actually re-groups sound patterns of
these two types, whereas the blue cluster corresponds to type
III. Between the two clusters, stands an isolated pattern. It cor-
responds to a two-tone siren of a car passing by very fast, with
a strong ’Doppler effect’ that makes the frequency spectrum
unique among the 32 examples. This pattern may be considered
as an outlier and may be left outside the training corpus. More
generally, the last items to be merged are potential outliers.

Figure 3 shows the dendrogram of thebird concept. Sev-
eral clusters have been highlighted with colors, and numbered.
Clusters 1, 2, 3 (red, dark blue and blue) correspond to low-
pitched bird singing like Crows and Ducks. For example clus-
ter 2 re-groups two Squawk samples. The other clusters include
higher pitched sounds, like Robins, or Black Birds, for which
the three samples of our database were clustered together (the
light blue cluster, number 5).

Among the 62 sound samples of this concept, there are at
least two true outliers: a pecking Woodpecker with no singing
(pointed by an arrow in Figure 3) and the sound of a sea wave
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Figure 4: Dendrogram for the 23 concepts, limited to the 150
highest nodes.

(indicated by a ’+’ sign). These two outliers should be clustered
with the biggest distances with the other patterns. The pecking
Woodpecker is indeed clustered among the last ones, but it is
not the case for the sea wave sound. It has been clustered with
a pattern of a singing bird with a continuous noise of wind in
the background, that could explain the similarity between both
sounds. This example shows the limit of considering only the
last patterns to be merged corresponding to the black lines in the
dendrograms, as potential outliers. Furthermore, the pecking
Woodpecker is not the last one to be merged. Some singing
bird patterns were found less similar to the other sounds than
the Woodpecker pattern, like cluster 7 for instance, in violet,
which clustered two Owl samples.

4.2. Inter-concept clustering

At pattern level

With all the 746 concept patterns listed in Table 1, the entire
dendrogram shows 745 distinct nodes, that make the dendro-
gram very ”crowdy” and thus not easy to analyze. Therefore, it
is interesting to look at different heights of the dendrogram to
try to identify clusters.

Figure 4 shows the highest 150 nodes of the entire dendro-
gram. We chose this threshold since two big clusters, shown
in yellow and orange in the left lower corner, number 1 and 2,
are well distinguishable. Cluster 1 and 2 totalize respectively
14.6% and 66.9% of all the patterns. The other colored clusters
are smaller, clustering from two to ten patterns of the same con-
cept. For example, cluster number ’3’ in the figure (in red), is
comprised of 10 bird patterns, totalizing 16% of the total num-
ber of bird patterns.

Cluster 1 (yellow) merges patterns from thebird, cat, dog
andsirenconcepts, with respective percentages 40.3%, 19.2%,
90.0% and 25.0% of patterns for each concept. Cluster 2 merges
patterns from all the other concepts, except telephone patterns,
with very high percentages (>95%) forairplane, applause, bus,
gun, helicopter, horse, traffic andwaterconcepts. The low per-
centages observed for cluster 1 may indicate that the likeliness
between the involved concepts is limited. Cluster 2 is much
more representative of its involved concepts. The presence of
horse patterns in cluster 2 is natural since they represent walking
or trotting horse sounds, and may be similar to some applause,
helicopter or even gun sounds. Some bird and siren patterns



are also present in this cluster, with respective percentages of
11.3% and 28.1%. This shows the limit of our representation
involving only means and variances. Also, the cluster analysis
depends on the height where the dendrogram is cut. Looking at
smaller heights, one of the node includes 159 patterns (32.6%)
in total, with patterns from theairplane, bus, helicopter, horse
andtraffic concepts, which is more satisfying from a perceptual
or semantic point of view.

Even if the two clusters are very general since many con-
cepts are involved, the clear distinction between both clusters
seems rather natural, since sounds from the two clusters are very
different. Cluster 1 merges sounds that have a pitch, such as an-
imal cries and sirens, whereas cluster 2 merges sounds mainly
produced by engines. For a hierarchical AED system architec-
ture, it would be useful to have a first step that differentiates
these two categories.

At concept level

In the experiments reported above, feature means and vari-
ances were computed for each sound example. We report
now an experiment where we trained Gaussian mixture mod-
els (GMM) with only one mixture, with one model for each
concept, using the Torch library [12]. There are 41 features so
41 means and variances are estimated. For each concept, a vec-
tor containing the 82 parameters is used as a representation of
the concept. The 23 vectors fed the same hierarchical clustering
algorithm as used previously.

We have used a GMM training tool because initially we
wanted to use likelihoods to do the clustering. So far no con-
cluding results have been found with likelihoods, and this is
still ongoing work. Since the training of single mixture GMM
consists in a likelihood maximization, it is equivalent to simply
compute means and variances over all sound patterns of each
concept.

Figure 5 shows the dendrogram for the 23 concepts, with
the use of the classical Euclidean distance. The first impor-
tant cluster, has been highlighted in red. It is comprised of
thebus, traffic, car, propeller airplane, helicopter, jet airplane,
horse, fire, thunder, insect buzz, applause, water, typing and
gunconcepts. There is also a second interesting cluster, which
involves bigger distances, and which merges thedog, chicken
andhornconcepts. The first cluster, which is very general since
it involves many concepts, corresponds mainly to sounds pro-
duced by engines or by mechanical movements, such as flying
insects or walking horses. These sounds can be viewed as non-
pitched sounds. Figure 5 shows a clear distinction between non-
pitched sounds, produced by an engine (buses, airplanes, etc.)
or by a mechanical behavior (horse walking, water falling), and
pitched sounds like animals cries, siren or ring-tones. The most
similar concepts that have been found arebus, traffic andcar.
These concepts are similar from a semantic point of view, and
a generic concept may be useful. The first big cluster also con-
tains another meaningful cluster, which isapplause, typingand
water.

Finally,digital telephonering-tones, andsirensform an iso-
lated cluster, nevertheless with a high clustering distance of all
the clusters.

Figure 6 gives the dendrogram found with the modified Eu-
clidean distance. Clusters are globally similar to those of figure
5, nevertheless there are interesting differences. Thehelicopter
concept is now clustered topropeller airplane, which is more
satisfying thanjet airplane. The dog, chickenand horn con-
cepts form a cluster, as in the previous experiment, but in a dis-

FDR rank Features
1-6 PLP: 1, 3, 2, 0, 6, 4
7-8 BR, BW
9 PLP: 5
10 ZCR
11-19 PLP: 7, 15, 17, 9, 8, 16, 13, 12, 11

Table 2: Fisher Discriminative Ratio (FDR) ranks and the cor-
responding features.

tinct clustering order. Thedogconcept has been found closer to
horn than tochicken.

The salience of the acoustic features is evaluated by com-
puting the Fisher Discriminant Ratio (FDR) given in Equation
4. This ratio is evaluated for each featurei of the 41 features in
total, and for each pair of conceptsCm, Cn. Termsµi,Cm

and
σ2

i,Cm
are respectively the concept mean and variance values of

featurei, for conceptCm. The larger the FDR is, the more the
feature discriminates the two concepts being compared.

FDR(Cm, Cn, i) =
(µi,Cm

− µi,Cn
)2

σ2

i,Cm

+ σ2

i,Cn

(4)

The ratios were computed over the 253 possible pairs of
concepts (there are 23 distinct concepts in total) and the fea-
ture that yields the biggest ratio is considered to be the more
salient feature for the pair of interest. Table 2 shows the most
salient features, by showing their rank determined by counting
the number of times they had the biggest FDR. For example,
the PLP coefficient number 1 (Energy has number 0) appeared
to have the biggest FDR for 60 comparisons of distinct con-
cept pairs, so that this feature has rank one. The six most
salient features correspond to the first PLP coefficients, fol-
lowed by brightness (BR), bandwidth (BW) and zero-crossing
rate (ZCR). It is interesting to notice that no derivative PLP co-
efficient appeared in the ranking, which may be due to the large
frame interval used to compute the features (250ms).

5. Application to Audio Event Detection
Having identified consistencies and confusions among the con-
cepts, a hierarchical AED system could be designed. This ap-
proach seems very interesting, especially if only little training
data is available for some concepts.

In a previous study [1], we have used one-against-all clas-
sifiers, that give a binary decision for each concept at a frame
level. By merging training data of concepts that were found to
be similar with the HC, such asbus, traffic, andcar for exam-
ple, a detector trained with this “multi-concept” data, may be
more robust. Once a sound to be identified has been detected
by thebus, traffic, car detector, three classifiers could be used
to assign one of the three concepts to the sound.

In the previous reported experiments, a rough separation
between “non-pitched” sounds (concepts:bus, traffic, car, etc.)
and “pitched” sounds (concepts:bird, dog, chicken, etc.) has
been identified (see Figures 5 and 6). In a hierarchical AED
system, a pitched/non-pitched classifier could be trained with
these two groups of concepts. After this first distinction, if a
sample to be identified was found to be “non-pitched”, the next
decision would be to classify the sample between theguncon-
cept, that stands alone in the red cluster of Figure 5, and all the
other “non-pitched” concepts. Then, if for example, this exam-
ple was not classified as part of thegun concept, the next de-



bus tra car pro hel jet hor fir thu buz ap wat typ gun bir dog chi ho ch cat dig sir bell
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Figure 5: Dendrogram for the 23 concepts, achieved with the classical Euclidean distance. Y-axis represents cluster distances. Abbre-
viations: tratraffic, propropeller airplane, helhelicopter, horhorse, fir fire, thu thunder, apapplause, watwater, typ typing, bir bird,
chi chicken, hohorn, ch insect chirp, dig digital telephone, sir siren.

bus tra car hel pro hor jet buz wat typ fir thu ap gun ch bir sir dig dog ho chi cat bell
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Figure 6: Dendrogram for the 23 concepts, achieved with the modified Euclidean distance. Y-axis represents cluster distances. Abbre-
viations: tratraffic, propropeller airplane, helhelicopter, horhorse, fir fire, thu thunder, apapplause, watwater, typ typing, bir bird,
chi chicken, hohorn, ch insect chirp, dig digital telephone, sir siren.



cision would be to classify the sample between the clusterdog,
chirp andhorn, and the remaining ten “non-pitched” concepts,
from busto insect buzz, etc.

6. Summary and future work
This paper has presented an experimental study assessing the
use of hierarchical clustering (HC) to try to identify similari-
ties and dissimilarities between sound samples, represented by
common features (PLP, ZCR, etc.), for a task of Audio Event
Detection in videos. The experiments were carried out on the
sound effect corpus used to train audio event detectors, used in
the VIDIVIDEO project.

Even if the sound effect corpus provides sound files with
precise titles, there are files that do not correspond to their asso-
ciated semantic concept. These outliers are not suitable to train
detectors or classifiers. HC has been investigated to help finding
outliers, to avoid the morose task to listen to each of the audio
samples.

Twenty-three different concepts have been chosen, cover-
ing very distinct sounds, from cat meowing to jet airplane en-
gines. First, at pattern-level, means and variances of the fea-
tures computed over each audio signal have been used to try
to point out outliers for each concept. These outliers should
be among the patterns that are the most distant from all the
other patterns, and therefore clustered in the last iterations of
the clustering process. Some perceptually similar patterns were
clustered together, and some outliers were found to be clustered
with the biggest distances between patterns. But the very sim-
ple mean and variance representations seems to be insufficient
to detect all the outliers, in particular when the sound patterns
have a background noise. Second, means and variances over all
the signals of each concept have been used to represent the 23
concepts. Various distance measure have been tested, and two
Euclidean distances have been found to provide more consis-
tent clusters in a semantic and conceptual sense than other dis-
tances like the weighted Gaussian distance or the Mahalanobis
distance. Two large groups emerged from the clustering, one
“non-pitched” sound cluster (concepts:bus, traffic, car, etc.),
and the “pitched” sounds (concepts:bird, dog, chicken, etc.).
Perceptually similar concepts have clustered too, likeapplause,
water and typing, or dog, chickenandhorn. This information
can be used to design a hierarchical detection system.

HC may be useful also to build a ’top-down’ hierarchi-
cal detection system, which would first differentiate large cate-
gories of sounds, such as pitched and non-pitched sounds, and
then use more and more specialized detectors to classify sounds
with a chosen granularity. As shown in the litterature, this ap-
proach should be more robust than directly using specified de-
tectors, since training data drastically lacks for some semantic
concepts. Future work will consider audio event classification
experiments.

By using only feature means and variances, the time struc-
ture of the audio events has not been used. The approach would
clearly beneficiate in precision by using the time structure of the
sound patterns, for example to distinguish a car passing by from
a stopped car. Silence also provides useful information. For in-
stance, ring-tones are not continuous, otherwise they would be
very annoying. On the contrary, emergency or security sirens
are continuous. In that case, silences between ring-tones could
differentiate them from sirens. In that sense, percentages of
low-energy frames could be an additional interesting parame-
ter.

The set of features could be also extended. In partic-

ular, temporal shape features like attack-time, temporal in-
crease/decrease and effective duration intuitively seem useful
for our task. Finally, adding new concepts and more training
patterns is also part of our future work.
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